60 0000 (Sampling Distributions)

oooo

2014

6 0 0000 (Sampling Distributions)



Sampling

@ In this chapter, we study how we can evaluate the sampling
uncertainty. (Remember that we assume that we can only observe a
sample not population, which is the core assumption of the
statistical inference. See Chapter 1.)

@ Before pursuing this, we must repeat an important warning: How we
collect data is at least as important as how we analyze it. In
particular, a sampling should be representative of the population, and
random sampling is often the best way to achieve this.

o If a sample is not random, it may be so biased that it is worse than
useless!
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: Consider a telephone survey of consumer attitudes toward fast foods.

@ What if a survey of residences is conducted from 9am to 5pm?
Answer: It will miss | ], the very
people most likely to use and appreciate fast foods.

@ Thus, even if the phone list were randomly selected, we see the
responses would still not be random.

@ A better approach would be to select a smaller random sample of
residences, and then phone back as often as necessary to get a
complete, or at least a very high, response rate.

@ A truly random sample of 20 replies like this might be much better
than a biased sample ten times as large. A large but biased sample
may look good because of its size, but in fact, it just consists of the
same bias being repeated over and over!
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Random Sampling

Definition

The population is the total collection of objects or people to be studied,
from which a sample is to be drawn.

a. If you wish to predict an election, the population of interest might be
all the American voters.

b. If you wish to estimate the average height of students in University of
Tokyo, the population is all students in this university.

Remark: Note that (we assume) the population is not observable, but we can
draw a sample from the population!

Remark: If the population is observable, we can just calculate the exact mean
from the population, of course. There is no need to sample in this case. (Ex.)
Census
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The Random Sample

Definition

A sample is called a random sample if each individual in the population is
equally likely to be chosen every time we draw an observation.

For example, we could take a random sample of 5 students in a class of
100 men in the following way:

o Draw chips from a bowl: Record each student’s height on a chip,

mix all these 100 chips in a large bowl, and then draw the sample of
n =75 chips.
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Sampling with or without replacement

@ There are two ways of sampling depending on whether or not we
replace each chip before drawing the next, sampling with
replacement and sampling without replacement.

@ In small populations such as 100 people, if we draw a sample with
replacement, later chips are completely independent of each chip drawn
earlier. On the other hand, if each chip is not replaced, the probabilities
involved in the draw of later chips will change, that is, later chips are
dependent on each chip drawn earlier.

However, . ..
In large populations, even if we sample without replacement, it is

practically the same as with replacement, so that we still essentially have
independence.

We will consider the cases where the observations are independent below
unless otherwise noted.
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Sampling Distribution

Let's consider the case where we try to estimate the population mean p by
the sample mean X.

We hope the sample mean X is a close estimate of the population mean L.
An important question is how X varies from sample to sample.

Definition

The distribution of X is called the sampling distribution.

The sampling distribution tells us how X varies from sample to sample,
from which we can get important information on how close X comes to u.
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There are two ways we can study the sampling distribution.

1. We could repeat the process of drawing sample and estimating the
sample mean X over and over using a computer, and build up the
sampling distribution. It is called Monte Carlo sampling.

2. A more precise and useful (but often more difficult) alternative is to
derive mathematical formulas for the sampling distribution of X. Once
we have derived such formulas (as we do in the next section) they can be
applied broadly to a whole multitude of sampling problems.
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Moments of the Sample Mean

If we take a random sample of observations from this population and
calculate the sample mean X, how good will X be as an estimator of its

target u?
To answer this, we can calculate the mean and the variance of the X.

EIX] = [ 3" Xi
i=1

= [ ]

It tells us that on average, the sample mean X will be “on target”,
that is, equal to .
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Next, we calculate the variance of X.

1
= ?[Var(Xl) + Var(Xp) + - -+ + Var(X,)]
1 o2

_ 21 _
e
and B
Standard deviation of X = [ ]
Remark: Note that we used the fact that the n observations Xi,..., X,

are independent.
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The standard deviation of X is commonly called the standard error, or
SE:

Standard error of X, SE = | ] J

This is sometimes called “Square Root Rule”. This formula shows
explicitly that the larger the value of n, the | | SE becomes. It
then adds precision to the simple idea that the larger the sample, the more
accuracy X estimates the population mean p.
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The Shape of the Sampling Distribution

In the previous section, we found the expected value and standard error of
X. The remaining issue is the shape of the sampling distribution.

There is a fundamentally important theorem called Central Limit
Theorem on the distribution of X.

If the population follows the normal distribution, or the sample size is large
(often n =10 or 20 will be large enough), then in either case the
sampling distribution has an approximately normal shape.

Our conclusion so far on random sampling may be summarized into one
statement:

The Normal Approximation Rule: In random samples of size n, the
sample mean X fluctuates around the population mean y with a standard
error of o /v/n (where o is the population standard deviation).

Therefore, as n increases, the sampling distribution of X concentrates
more and more around the target p. It also gets closer and closer to the
normal distribution.
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Example 6-2: A population of men on a large midwestern campus has a
mean height ;1 = 69 inches, and a standard deviation o = 3.22 inches. If a
random sample of n = 10 men is drawn, what is the chance the sample
mean X will be within 2 inches of the population mean y?
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Example 6-3:

a. Suppose a large class in statistics has marks normally distributed
around a mean of 72 with a standard deviation of 9. Find the probability
that an individual student drawn at random will have a mark over 80.

b. Find the probability that a random sample of 10 students will have an
average mark over 80.

c. If the population were not normal, what would be your answer to part

b?
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Example 6-4: A ski lift is designed with a total load limit of 10,000
pounds. It claims a capacity of 50 persons. Suppose the weights of all the
people using the lift have a mean of 190 pounds and a standard deviation
of 25 pounds. What is the probability that a random group of 50 persons
will total more than the load limit of 10,000 pounds?
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Proportions (Percentages)

We can apply the Normal Approximation Rule to the binomial data
(e.g. the political poll data where there are only two parties, See Chapter
1).

Suppose that we are interested in the proportion of the population who
will vote for Republican, .

Question:

(i) What is X in this case?
(i) What are the 1 and o2 in this case?
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Answer:
(i) We can treat each data as

_J 1if the individual votes Republican
"] 0 otherwise

Therefore, the sample proportion, P, can be written as
P=] ]

Remark: Such random variables are called dummy variables, an
indispensable concept in applied statistics.

(i)
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The Normal Approximation Rule for Proportions: In random samples
of size n, the sample proportion P fluctuates around the population
proportion 7w with a standard error of \/7(1 — m)/n.

Therefore, as n increases, the sampling distribution of P concentrates
more and more around the target 7. It also gets closer and closer to the
normal distribution.

6 0 0000 (Sampling Distributions) 2014 18 / 21



Example 6-6: Of your first 15 grandchildren, what is the chance there will
be more than 10 boys? (We assume that the probability of a boy is 50 %
here.)
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6-16: In a large production run of millions of electronic chips, only 2% are
defective. What is the chance that of 1,000 chips pulled off the assembly
line, 40 or more would be defective?
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6-19: In the 1988 U.S. Presidential election, 53.9% of the voters were for
Bush. If a Gallup poll of 1000 voters have randomly sampled from the

population, what is the chance it would have erroneously predicted Bush
to have a minority?
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Point Estimation

@ It is essential to remember that the population mean p and variance

02 are constants (though generally unknown).

These are called population parameters. J

@ By contrast, the sample mean X and sample variance s? are random

variables. Each varies sample to sample, according to its sampling

distribution.
A random variable such as X and s2, which is calculated from the
observations in a sample, is called sample statistic.
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There can be several estimators to estimate the population parameter.
For example...

How good is the sample mean X as an estimator of ? Would the sample
median be better?

To answer such questions, we now develop criteria for judging a “good”
estimator.
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Efficiency of Unbiased Estimators

We already have noted that the sample mean X is, on average, exactly on
its target 4. We therefore call X an Unbiased Estimator of .

To generalize, we consider any population parameter 6 and denote its
estimator by U. If, on average, U is exactly on target, it is called an
unbiased estimator.

More formally, we define:

Definition

U is an unbiased estimator of 6 if

E(U) = 0.
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Of course, an estimator V is called biased if E(V) is different from 6. In
fact, bias is defined as this difference:

Definition

Bias= E(V) — 6.
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Example 7-1: Suppose each of the 200,000 adults in a city under study has
eaten a number of X of fast-food meals in the past week. However, a residential
phone survey on a week-day afternoon misses those who are working -the very
people most likely to eat fast foods. As shown the table, this leaves a small
subpopulation who would respond, especially small for higher value of X.

Whole Target Population | Subpopulation Responding
X = Number of meals | Freq. f Rel. Freq. f/N | Freq. f Rel. Freq. f/N
0 100,000 0.5 38,000 0.76
1 40,000 0.2 6,000 0.12
2 40,000 0.2 4,000 0.08
3 20,000 0.1 2,000 0.04
200,000 1 50,000 1

a. What is the mean p of the whole target population, and the mean ug of the
subpopulation who would respond?

b. A random sample of 200 phone calls will bring a response of about 50, whose
average R will be used to estimate y. What is its bias?
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Efficient Estimators (Minimum Variance)

As well as being on target on the average, we also would like the
distribution of an estimator to be highly concentrated — that is, to have a
small variance.

This is the notion of efficiency.

We define the relative efficiency of two unbiased estimators:

Efficiency of V compared to W = ‘\//er((‘(‘//))
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Example 1: Let's compare the sample mean X and the sample median
Med(X) to estimate the center of a normal population.
In sampling from a normal population, it can be shown that for large

samples,
Var(Med(X)) ~ 1.57¢%/n.

Hence,

_ 1.5702
Efficiency of X relative to Med(X) =~ 572(;’,/’7
o

=1.57.

We conclude that, in estimating the center of a normal population, the
sample mean X is about 57% more efficient than the sample median
Med(X).

70 00000 (Parameter Estimation) 2014 8 /34



Example 2: Let's compare the sample mean X and the sample median
Med(X) to estimate the center of a population with thicker tails than the
normal, which is called the Laplace distribution.

In sampling from a Laplace population, it can be shown that for large

samples,
Var(Med(X)) = 0.502/n.

Hence,

_050%/n

Efficiency of X relative to Med(X) ~ oy 0.5.
o2/n

We conclude that, in estimating the center of a Laplace population, the
sample mean X is about 50% less efficient than the sample median
Med(X).

This indicates that, when a population has thicker tails (i.e., outlying observation
are likely to occur), the sample mean has larger variance while the variance of the
sample median does not increase much because it ignores the distant outliers.
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Efficiency of Biased and Unbiased Estimators

Now suppose we are comparing both biased and unbiased estimators.
How can we make precise the notion of being “closest to the target
overall?”

The important criterion of for judging a estimator V is

Definition
Mean squared error (MSE) = E[(V — 6)?].
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In fact, it can be shown that MSE is a combination of variance and bias:

MSE = (Variance of estimator) + (its bias)?. (1)J

We choose the estimator that [ | this MSE.
We give a general definition of the relative efficiency of two estimators:

For any two estimators—whether biased or unbiased—

MSE(W)

Efficiency of V compared to W = W(\/)
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Proof of (1):

MSE = E[(V —6)?
E[(V — E[V] + E[V] - 6)}]
E[(V — E[V])’] + (E[V] — 6)* + 2E[V — E[V]I(E[V] — 6)

= (Variance of estimator) + (its bias)?
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Example 7-3: In Example 7-1, recall the phone survey of 50 response
from 200 calls, that had a serious nonresponse bias. In addition, the
average response R has variability too.

a. To measure how much R fluctuates around its target  overall,
calculate its MSE.

b. If the sample size was increased fivefold, how much would the MSE be
reduced?

c. A second statistician takes a sample survey of only n = 20 phone calls,
with persistent follow-up until he gets a response. Let this small but
unbiased sample have a sample mean denoted by X. What is its MSE?
d. In trying to publish his results, the second statistician was criticized for
using a sample only 1/10 as large as the first. In fact, his sample size

n = 20 was labeled “ridiculous”. What defense might he offer?
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Consistency: Eventually on Target

Like efficiency, consistency is one of the desirable properties of estimators.
A consistent estimator is one that concentrates in a narrower and
narrower band around the target as sample size n increases indefinitely.
One of the conditions that makes an estimator consistent is if its MSE
approaches zero in the limit:

One of the conditions that makes an estimator consistent is:
if its bias and variance both approaches zero as the sample size n
increases.
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Example 7-4

a. Is X a consistent estimator of 1?

b. Is P a consistent estimator of 77

c. Is the average response R in Example 7-1 (based on a 25% response
rate) a consistent estimator of u?
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Confidence Intervals

@ Point estimates do not give us any information about the reliability of
it.

@ It is important to know how reliable the estimates are.

@ The standard error (SE) is one of the important measure of it.

@ However, the sampling distributions of statistics give more
information about it. We can evaluate the “probability” that the true
parameters are included in some interval.
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A Single Mean: Theory (We assume o2 is KNOWN here)

How can we construct the confidence interval so that it includes the true
mean with a particular “probability”? (It is common to choose 95%

confidence.)
e Note that Pr(|Z] < | ]) = 0.95 from Table IV.
@ From the CLT or Normal approximation rule, we have X ~ N (s, "—nz)

These facts imply (as we discussed in Chapter 6)
X —p
o/v/n

Pr( < 1.96) ~ 0.95.
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We can rewrite

0.95 ~ Pr( < 1.96)
U/xf
= Pr(—1.96 < X - < 1.96)
' a/f
= = g
= Pr(X —1.96-— X +1.96—). 2
r( \/ﬁ <pu< + ﬁ) ( )
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Hence we have

— o = g
Pr(X —196— < pu< X+196—
r( N W + NG
Remark: We note that p is popuIatioQ constant. It is_a probability
statement about the random interval X — 1.96% to X + 1.96\%.

The implication of the equation (3) is as follows:

) ~ 0.95. (3)

Suppose the statistician draws samples and calculates confidence intervals
again and again, each time from a different random sample. The
statement (3) indicates that, in the long run, 95% of the intervals
constructed this way will bracket the true mean .

The 95% confidence interval is written as

T
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If we wish to be more confident, for example, 99% confident, then the
interval must be large enough to encompass 99% of the probability. Since
this leaves .005 in each tail, the 99% confidence interval would become

< o
=X+ —.

p=Xxl 1~ J

Thus the confidence interval becomes [wider] than the 95% one.

In general,...

Let z,/» be the value of /2 percentile of the standard normal distribution.

The 1 — « confidence interval is written as

= g
/'L:X:l:za/Zﬁ' (5)

(oooo) 70 00000 (Parameter Estimation) 2014 20 / 34



8-1 Make the correct choice in each square bracket.

a. The sample mean [X, p] is an unbiased estimate of the population mean [X,
1] — assuming the sample is [random, very large].

b. X fluctuates from sample to sample with a standard deviation equal to [o/n,
o/+/n], which is also called the [standard error SE, population standard
deviation].

c. If we make an allowance of about [\/n, 2] standard errors on either side of X,
we obtain an interval wide enough that it has a 95% chance of covering the
target y. This is called the 95% confidence interval for [X, p].

d. A statistician who constructed a thousand of these 95% confidence intervals
over his lifetime would miss the target [practically never, about 50 times, about
950 times]. Of course, he [would, would not] know just which times these were.
e. For greater confidence such as 99%, the confidence interval must be made
[narrower, wider].
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Small sample t

@ In the previous section it was assumed, quite unrealistically, that a
statistician knows the true population standard deviation o.

@ In this section, we consider the practical case where ¢ is unknown.

@ With o unknown, the statistician wishing to evaluate the confidence
interval (5) must use some estimate of o — with the most obvious
candidate being the sample standard deviation

s= \/nil Sl (Xi = X)2.

@ But the use of s introduces an additional source of unreliability,
especially if the sample is small.

@ To retain 95% confidence, we must therefore widen the interval.

@ We do so by replacing the zgp5 value taken from the standard normal
distribution with a larger tgp5 value taken from a similar distribution
called Student’s t distribution.
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When we substitute s and the compensating t 25 into (4), we obtain:

95% confidence interval for the population mean

- s
=Xt tgs——. 6
M 05 (6)

The value t o5 is listed in the shaded column of Table V, and is tabulated
according to the degree of freedom (d.f.):

d.f. = amount of information used in calculation s2

2

divisor in s

In calculating s2, d.f. =n—1.
For example, if the sample size is n = 4, we read down Table V to
d.f. =[ ], which gives tgos =[ ] to use in (6).
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In practice, when do we use the normal z table, and when the t table?
@ In the rare case when o is known, the normal z value in (4) is
appropriate.
@ In the usual case when o is estimated with s, the t value in (6) is
appropriate —regardless of sample size.

@ However, as the sample size grows larger than 100, say, the
normal z becomes a good approximation to the t. (For example,
as we read down the t-table , for d.f. = 120 we should use
to2s = 1.98; but using zg25 = 1.96 is an excellent approximation.)

@ So in practice when o is unknown, t needs to be used only for small
samples (n < 100).
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Example 8-2: From a large class, a random sample of 4 grades were
drawn: 64, 66, 89, and 77. Calculate a 95% confidence interval for the
whole class mean p.
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Difference in Two Means, Independent Samples: If

Population Variances are Known (In Theory)

Two population means are commonly compared by forming their
difference:

(11 — p2).
This difference is the population target to be estimated. A reasonable
estimate of this is the corresponding difference in sample means:

(X1 — Xa).

Using a familiar argument, we can construct the 95% confidence interval
around the estimate:

- o ot | 03
(1 — p2) = (X1 — X2) £ zoosy | — + —=.
m ny

— - 2 2
because Var(X; — Xz) = % + % (Note that two samples are assumed to
be independent here.)
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If Population Variance is Unknown (In Practice)

@ In practice, the population ¢ is not known, and has to be replaced
with an estimate, customarily denoted by s,.

@ We assume here that o7 and o5 are known to have a common value,
say 0. (This is a rather strong assumption, but we assume it at this
point.)

Then zg5 has to be replaced with the broader value t 25, and so:

95% confidence interval, using independent samples, when both
populations have the same underlying variance:

_ _ 1 1
(11— p2) = (X1 — X2) £ toosspy [ — + —.
m n2
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How do we derive the estimate 5,7

@ Since both populations have the same variance o2, it is appropriate to
pool the information from both samples to estimate it.

@ So our estimate is called the pooled variance sg.

@ we add up all the squared deviation form both samples, and then
divide by the total d.f. in both samples, (n; — 1) + (nx — 1).

2 xXi- X1)® + 3 (Xo — X2)?
a (m—=1)+(n2—1)

where X1 (or X2) represents the typical observations in the first (or
second) sample. In this case, the d.f. for ¢ is

df. = (m — 1)+ (n —1). ]
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Example 8-3: From a large class, a random sample of 4 grades were
drawn: 64, 66, 89, and 77. From a second large class, an independent
sample of 3 grades were drawn: 56, 71, and 53. Calculate a 95%
confidence interval for the difference between the two class means, 1 — 2.

20 / 34
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Difference in Two Means, Matched Samples

@ In the previous section we were using independent samples, for
instance, a sample of students’ grades in the fall was compared to a
fresh sample of students’ grades in the spring.

@ In this section we will consider dependent samples, called matched
or paired samples.
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Analysis based on Individual Difference

Suppose a comparison of fall and spring grades is done using the same
students both times. Then the paired grades (spring Xi and fall X3) for
each of the students can be set out as follows:

Observed Grades

X1 X

Student  (Spring)  (Fall)
Trimble 64 57
Wilde 66 57
Giannos 89 73
Ames 77 65

@ The natural first step is to see how each student changed; that is calculating
the difference D = X; — X5, for each students.

@ Once these differences are calculated, we can proceed to treat the four
differences D now as a single sample, and analyze them just as we analyze
any other single sample.
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95% confidence interval, using matched samples

_ Sp
A =D+ tos—.
B
For our sample, as we calculate D= |, sp = | ], and
df=n—1=] ], we obtain
A=[ ]+] ]

Remark: Comparing to Example 8-3, we find that the matched-pair
approach gives a much more precise interval estimate. So, pairing is
obviously a desirable feature to design into any experiment, where feasible.
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Proportion: Large Sample Formula

Confidence intervals for proportions (percentages) are very similar to
means. We simply use the appropriate form of the normal approximation
rule, and so obtain the 95% confidence interval for 7:

95% confidence interval for the population, for large n

7=P+1.96 =)

For this to be a good approximation, the sample size n ought to be large
enough so that at least 5 successes and 5 failures turn up.
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Difference in Two Proportions: Large Samples

Just as we derived the confidence interval to compare two means, we
could similarly derive the confidence interval to compare two population
proportions:

95% confidence interval for the difference in proportions, for large n; and
ny, and independent samples

Pi(1—P1)  Po(1—Po)
n n»

(mp —m) =(P1— P) + 1.96\/
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