小テスト 4 解答

－ 1 ：
（a）Let

$$
\begin{aligned}
& X_{1}=\text { the strength of the half from old process, } \\
& X_{2}=\text { the strength of the half from new process. }
\end{aligned}
$$

Let $D=X_{2}-X_{1}$ ．Then，the 95% confidence interval is

$$
\begin{aligned}
& {\left[\bar{D}-t_{.025} \frac{s_{D}}{\sqrt{n}}, \bar{D}-t_{.025} \frac{s_{D}}{\sqrt{n}}\right]} \\
& =\left[20-2.57 \times \sqrt{\frac{320}{6}}, 20+2.57 \times \sqrt{\frac{320}{6}}\right] \\
& \approx[20-18.8,20+18.8]
\end{aligned}
$$

where there are 5 d．f．in calculating SE．（Here，$s_{D}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}}$ ．）
Since the $H_{0}: \Delta \equiv \mu_{2}-\mu_{1}=0$ lies outside the 95% confidence interval ［20－18．8， $20+18.8]$ ，the difference is statistically discernible（or significant）with 5% level．
（b）Since the null hypothesis is $H_{0}: \Delta=0, \bar{D}=20$ and the estimated $\mathrm{SE}=7.3$ ，the t－statistic is

$$
t=\frac{\text { estimate }- \text { null hypothesis }}{\text { estimated SE }}=\frac{20-0}{7.3}=2.74 .
$$

Since d．f．$=5$ ，we can look up the tail area above 2.74 in the t－table：

$$
.010<\text { (one-sided) p-value }<.025 .
$$

－ 2 ：
（a）The 95% confidence interval for the change is

$$
\begin{aligned}
& {\left[\left(P_{2}-P_{1}\right)-z_{.025} \sqrt{\frac{P_{1}\left(1-P_{1}\right)}{n_{1}}+\frac{P_{2}\left(1-P_{2}\right)}{n_{2}}},\right.} \\
& \left.\quad\left(P_{2}-P_{1}\right)+z_{.025} \sqrt{\frac{P_{1}\left(1-P_{1}\right)}{n_{1}}+\frac{P_{2}\left(1-P_{2}\right)}{n_{2}}}\right] \\
& \approx[-0.06-1.96 \times 0.018,-0.06+1.96 \times 0.018] \\
& \approx[-0.06-0.036,-0.06+0.036] \\
& =[-6 \%-3.6 \%,-6 \%+3.6 \%] .
\end{aligned}
$$

Since the $H_{0}: \Delta \equiv \pi_{2}-\pi_{1}=0$ lies outside the 95% confidence interval $[-6 \%-3.6 \%,-6 \%+3.6 \%]$, the difference is statistically discernible (or significant) with 5% level.
(b) Since the null hypothesis is $H_{0}: \Delta \equiv \pi_{2}-\pi_{1}=0, P_{2}-P_{1}=-0.06$ and the estimated $\mathrm{SE}=0.018$, the t-statistic is

$$
t=\frac{\text { estimate }- \text { null hypothesis }}{\text { estimated SE }} \approx \frac{-0.06-0}{0.018}=-3.33 .
$$

Since $n=200$ is large, we can look up the tail area above 3.33 in the normal table:

$$
\text { (one-sided) } \mathrm{p} \text {-value } \approx 10^{-3} .
$$

That is, the sampling data shows little credibility for the null hypothesis that there is no change in the percentage who favor the acceptance of marijuana from 1980 to 1985.

- 3: Let the fitted line be

$$
\hat{Y}_{i}=b_{2} X_{i}
$$

Then

$$
e_{i}=Y_{i}-b_{2} X_{i}
$$

and

$$
R S S=\sum e_{i}^{2}=\sum\left(Y_{i}-b_{2} X_{i}\right)^{2}
$$

The first-order condition for a minimum is

$$
\frac{d R S S}{d b_{2}}=-2 \sum X_{i}\left(Y_{i}-b_{2} X_{i}\right)=0
$$

and so

$$
b_{2}=\frac{\sum X_{i} Y_{i}}{\sum X_{i}{ }^{2}} .
$$

The second derivative is

$$
2 \sum X_{i}^{2} .
$$

This is positive, confirming that we have found a minimum.

4: $d . f$. $=n-2=58$. From the t -table, we find that

$$
t_{\text {crit }, 5 \%}=2.00, t_{\text {crit }, 1 \%}=2.66
$$

(a) $t=\frac{b_{2}}{\text { s.e. (b2) }}=\frac{-0.20}{0.07}=-2.86$. So we reject H_{0} at the 1% level. There is no need to mention the 5% test because rejection at the 1% level automatically means rejection at the 5% level.
(b) $t=\frac{b_{2}}{s . e .\left(b_{2}\right)}=\frac{-0.12}{0.07}=-1.71$. So we do not reject H_{0} at the 5% level. There is no need to mention the 1% test because not rejecting at the 5% level automatically means not rejecting at the 1% level.

- 5: (i)The coefficient of ASVABC implies that S increases by 0.126 years for every one-point increase in ASVABC. By the calculations $t=\frac{0.126}{0.010}=12.6$, the t-tests indicate that the coefficients of ASVABC is significant at 1% level. $\left(t_{\text {crit }, 1 \%}=2.59\right.$ with d.f. $=n-5=535$. $)$
(ii) The 95% confidence interval for the coefficient of SM is

$$
\begin{aligned}
& \quad[0.049-1.96 \times 0.039,0.049+1.96 \times 0.039]=[-0.027,0.125] \\
& \left(t_{\text {crit }, 5 \%}=1.96 \text { with } d . f .=n-5=535 .\right)
\end{aligned}
$$

