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Performance Assessment of GDP Forecasting Models for Cambodia’s Economy 

Abstract 

Gross domestic product is a key indicator gauging national economic performance as well as state of 

domestic macroeconomy. Being aware of its future paths is critical in planning budgeting, managing financial 

position and developing economic and social development goals and strategies. By utilizing annual time series 

data of real gross domestic product, real export and import of goods and services of Cambodia from 1993 to 

2020, three simple models such as autoregressive model, autoregressive integrated moving average model and 

vector autoregressive model are applied to model and forecast real gross domestic product of Cambodia aiming 

to find the best performing forecasting model. The forecast is produced by following five steps consisting of 

stationary tests, model identification, model estimation, model diagnostics and model forecasting. The results 

show that ARIMA(1,1,2) model performs the best in forecasting economic activities of Cambodia with the 

relatively lowest forecast accuracy metrics. Going forward, with adverse impacts from Covid-19 in 2020, 

Cambodia’s economy still encounters a negative development in 2021, then realizes positive consistent growth 

from 2022 to 2025.   
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1. Introduction 

 Gross domestic product (GDP) is defined by the IMF1 as the monetary value of final goods and 

services produced within borders of a country in a given period of time either a quarter or a year. It consists of 

not only transactions of goods and services in the market but also some nonmarket productions, for instance, 

education and defense services provided by the government.  

Typically, GDP is regarded as a key indicator gauging national economic performance as well as state 

of domestic macroeconomy as a whole. Fluctuations of GDP which is known as business cycles affect 

economic agents differently in terms of income, employment, price level and interest rate. Due to a great 

importance of such an indicator, being forward-looking of its possible future paths and variations is crucial for 

policy makers and central bankers whose objective is to keep the economy on the desired path by adjusting 

fiscal, monetary and exchange rate policies. The effects of these policies, however, are often lagged because 

it takes a considerable amount of time for such policies to influence spending behaviors of the population 

(Mankiw, 2016). As such, successful implementations of stabilizing policies require the ability to reliably and 

accurately forecast future economic conditions, particularly GDP. In addition, reliable and accurate forecast 

of GDP can serve as a practical basis for planning state and local budgeting, managing financial position and 

developing economic and social development goals and strategies (Stock, 2001).  

There are two main methods that can be applied to do forecasting either using univariate time series 

or multivariate economic models. The former is a simple single variable-based model with less data 

requirement, while the latter is relatively sophisticated and based on economic theories as well as assumptions 

with large data requirement. In data scarce environment, considering a trade-off between a model complexity 

and precision, simple univariate or VAR model is more likely to outperform large multivariate models 

(Robertson & Tallman, 1999).  

In this paper, given a short available time series data, three simple time series models are applied to 

forecast real GDP of Cambodia’s economy: Autoregressive (AR) model, Autoregressive Integrated Moving 

Average (ARIMA) model and Vector Autoregressive (VAR) model. The purpose of the paper is to test which 

of the three autoregressive model performs the best in forecasting the real GDP. 

 The rest of the paper is organized into four sections. Section 2 outlines existing empirical literature on 

GDP forecasting. Section 3 highlights methodologies of AR, ARIMA and VAR model analysis and forecasting 

as well as forecast accuracy metrics. Section 4 presents empirical results. The last section summarizes the 

study and provides conclusions.  

 
1 The International Monetary Fund 
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2. Review of Literature 

Zhang (2013) conducts a performance comparison between AR, ARIMA and VAR model to forecast 

regional real GDP per capita of 25 counties in Sweden. The author applies annual data from 1993 to 2009 into 

the analysis; around 70% of the original data which is between 1993 and 2004 is utilized to fit the model, and 

that of the last five years is used to evaluate forecast ability of each model. For each model, the author follows 

five steps including stationarity test, model identification, model estimation, model diagnostics and model 

forecasting. Then, to assess the forecast performace, percentage errors and mean absolute percentage errors 

are calculated and compared across each model (Diebold & Mariano, 1995). The empirical result shows that, 

due to a small sample size, the simpler AR(1) model performs the best in forecasting the real GDP per capita 

for a period of 5 years with 1.71% mean absolute percentage error, followed by ARIMA(0,1,3) and VAR(1) 

and (2).  

 Agrawal (2018) studies various specifications of ARIMA model in an attempt to find out the best 

model describing the evolution of India’s GDP and then to develop forecasts. The author utilizes quarterly real 

GDP data between second quarter of 1996 and second quarter of 2017 from Reserve Bank of India and Central 

Statistics Office. In terms of methodology, the author follows similar procedures as Zhang (2013). Based on 

the empirical analysis, there are two ARIMA specifications being considered such as ARIMA(1,0,1) and 

(1,0,2). However, between these two specifications, it is inconclusive which specification represents the data 

better. Subsequently, the author proceeds to dynamic, structural and fixed time forecasting by applying AR(1) 

and MA(2) model and studying their residuals. As a result, the paper concludes there is no significant 

differences between AR(1) and MA(2) model and forecasts from both models converge in the long run. 

Wei et al. (2010) applies time series model, particularly ARIMA model to forecast the GDP of the 

Shaanxi province in China. Data of GDP, obtained from 2008 Shaanxi Statistical Yearbook, from 1952 to 

2007 is used to set up the ARIMA model, and that between 2002 and 2007 is used to evaluate forecast accuracy. 

The authors, Zhang (2013) and Agrawal (2018) share the similar steps to construct the model. Following these 

procedures, the authors successfully construct ARIMA(1,2,1) model with white noise residual sequence. In 

addition, the paper concludes that ARIMA(1,2,1) model is acceptable for forecasting purposes as the relative 

error is within 5% range. 

Robertson and Tallman (1999) illustrates some detailed steps in designing and constructing a VAR 

forecasting model to produce real time forecast in an attempt to improve the application of VAR model used 

to do forecasting in business contexts and in policy institutions. The authors mentions that forecasting with 

VAR model is conducted to see dynamic correlation patterns between observed data, then the observed data 

can be used to forecast future values. In the paper, they employ VAR model to forecast real GDP growth, 
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inflation and unemployment of the US economy. Monthly data from January 1959 to December 1985 is 

utilized to fit the model, while the remaining of data which is until december 1997 is kept for testing purposes. 

The authors also highlights technical difficulties needed to be dealt with to implement practical applications 

as well as approaches to overcome those issues. In addition, the authors provide discussions regarding ways 

to improve forecast accuracy. 

 Andersson (2007) studies the performance of AR, VAR and random walk models to forecast real GDP 

growth of Swedish by employing forward looking surveys as explantory variables. The surveys include 

confidence of consumers and businesses, which are based on perspectives on the current and future economic 

conditions. The author utilizes quarterly data of real GDP of Swedish economy from first quarter of 1993 to 

fourth quarter of 2006. To assess forecast performace, mean errors, mean absolute errors and root mean square 

errors are calculated and compared. According to empirical analysis, the author concludes that VAR model 

exhibits superior performance compared to AR and random walk models. In addition, VAR(1) performs best 

for one quarter ahead forecast; VAR(2) performs best for four quarters ahead forecast; VAR(3) performs best 

for eight and twelve quarters ahead forecast. 

3. Methodology 

This section divides into three main parts. The first part discusses statistical background, stationarity 

tests, model identification, model estimation, model diagnostics and model forecasting of AR and ARIMA 

model together given their similar characteristics. The second part details those of VAR model with an addition 

of Granger causality test. The last part provides details to evaluate forecast accuracy.  

3.1. AR and ARIMA Model  

Application of univariate time series model forecasting is used widely in an economic and a financial 

field. Particularly, ARIMA model, popularized by Box and Jenkins (1976), has been increasingly utilizing to 

do forecasting due to its practical use for nonstationary time series data. 

3.1.1. Statistical Background 

 AR model is based on a concept that a current value of a time series can be written as a linear 

combination of its past values with a random error. An AR model of lag p, abbreviated as AR(p), can be 

expressed as follows: 

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 = 𝑐 + ∑ 𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

   ;      𝑡 = 1,2, … , 𝑇   

 Where 𝑐 is a constant term; 𝜙1, 𝜙2, … , 𝜙𝑝 are model parameters to be estimated and 𝜀𝑡 is the error 

term which is a white noise process assumed to be a sequence of independently and identically distributed 

random variables with 𝐸(𝜀𝑡) = 0 𝑎𝑛𝑑 𝑉𝑎𝑟(𝜀𝑡) = 𝜎2; 𝜀𝑡  ~ 𝑖𝑖𝑑 𝑁(0, 𝜎2). 
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 ARIMA model is a combination of AR and MA model2, called ARMA model, with an integrated 

process 3  denoted by I. ARMA model overcomes a drawback of AR model which ignores correlated 

unobserved noise structure in a time series which is sometimes informative in explaining the behavior of the 

series. An ARMA model of lag p and q, abbreviated as ARMA(p,q), can be expressed as follows: 

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝑣1𝜀𝑡−1 + ⋯ + 𝑣𝑞𝜀𝑡−𝑞

= 𝑐 + ∑ 𝜙𝑖𝑌𝑡−𝑖 +

𝑝

𝑖=1

∑ 𝑣𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝑞

𝑗=1

              ;           𝑡 = 1,2, … , 𝑇   

 Where 𝑐 is a constant term; 𝜙1, 𝜙2, … , 𝜙𝑝 and 𝑣1, 𝑣2, … , 𝑣𝑞 are AR and MA model parameters to be 

estimated, respectively. 

3.1.2. Stationarity Tests 

 Time series forecast exploits the past time series to forecast the future development. This requires the 

future to be similar to the past in a sense that correlations or distributions of the series in the future follow 

those of the past. In other words, a time series needs to have a stable mean and variance over time so that past 

relationships might be able to guide to the future. Technically, this is called stationarity. 

 The issue of stationarity can be dealt with by, first, using a line graph to get an overall idea on a time 

series. If the series exhibits an obvious trend, for instance, an upward or a downward pattern, the series is 

nonstationary. Alternatively, unit root tests can also be applied directly to determine the stationarity of the 

series. If the series is nonstationary, taking first or higher order differencing might make the series become 

stationary. Typically, differencing the series repeatedly can reduce the non-stationarity nature. However, it 

does not imply that the higher order differencing always better. According to Harvey (1989), differencing 

procedure is performed to extract information and to process data with the expense of information loss each 

time the procedure is used. 

With a concern of an over-differencing issue, two different unit root tests are applied which are 

Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. ADF test, developed 

by Dickey and Fuller (1979), tests the null hypothesis that there is a presence of a unit root in a time series, 

while the alternative hypothesis states that the series is stationary. Computed ADF statistics is usually a 

negative number and the more negative or less the statistics is, the higher chance of rejecting the null hypothesis 

 
2 Moving Average (MA) model expresses a current value of a time series as a function of its past errors with a random 

error. An MA model of lag q, abbreviated as MA(q), can be expressed as the following: 

𝑌𝑡 = 𝜀𝑡 + 𝑣1𝜀𝑡−1 + 𝑣2𝜀𝑡−2 + ⋯ + 𝑣𝑞𝜀𝑡−𝑞 = 𝜀𝑡 + ∑ 𝑣𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

   ;      𝑡 = 1,2, … , 𝑇 

3  Integrated process is the use of differencing to transform nonstationary time series to stationary process. In 

ARIMA(p,d,q) model, d refers to the number of times data got differencing to become stationary. 



Page 10 

 

at a certain level of confidence. KPSS test, developed by Kwiatkowski et al. (1992), can be said to be 

complimentary to ADF test. Contrary to ADF test, KPSS test tests the null hypothesis that a time series is 

stationary, while the alternative hypothesis states that there is a presence of a unit root in the series. Computed 

KPSS statistics is usually a positive number and the less positive or less the statistics is, the higher chance of 

failing to reject the null hypothesis at a certain level of confidence. In this paper, a time series is concluded as 

a stationary process once either ADF or KPSS test indicates so at a 5% significant level. 

3.1.3. Model Identification 

 After conducting necessary data transformations leading to a stationary process, autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots are used to tentatively determine a lag length 

of AR and ARMA model. Then, information criterion is applied to verify the selection.  

 ACF measures correlations between 𝑌𝑡 and 𝑌𝑡−𝑞, while PACF, controlling for intermediate lags in 

between, measures partial correlations between 𝑌𝑡 and 𝑌𝑡−𝑝. Ghysels and Marcellino (2018) presents a method 

to determine a lag length of AR, MA or ARMA model using ACF and PACF plots. If ACF plot displays an 

exponentially declining trend and PACF plot presents some peaks, this suggests a pure AR(p) model, with p 

is the number of peaks (statistically different from zero) in the PACF plot. If PACF plot displays an 

exponentially declining trend and ACF plot presents some peaks, this suggests a pure MA(q) model, with q is 

the number of peaks (statistically different from zero) in the ACF plot. If both ACF and PACF plots exhibit 

an exponentially declining trend, this suggests the mix model, specifically ARMA(p,q). 

 Then, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are employed to 

verify the tentatively selected lag length of AR and ARIMA model. AIC, developed by Akaike (1974), is a 

statistical technique to select a model by comparing the fit of a different models to observed time series. A 

relatively better model is the one with a relatively lower AIC value. Similarly, BIC, developed by Schwarz 

(1978), is also another criterion for model selection by measuring a trade-off between a model fit and model 

complexity. A relatively better model is the one with a relatively lower BIC value. AIC and BIC can be 

computed using the following formulas: 

 

𝐴𝐼𝐶(𝑝) = −2𝑙𝑛(𝐿) + 2(𝑝 + 𝑞)  

𝐵𝐼𝐶(𝑝) = −2𝑙𝑛(𝐿) + 𝑙𝑛(𝑇)(𝑝 + 𝑞) 

 Where 𝐿 is a likelihood of the series with a certain model; 𝑝 and 𝑞 is a lag length of AR and MA model, 

respectively and 𝑇 is a number of observations in the stationary process. 
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3.1.4. Model Estimation 

 With the determined lag length p for AR model as well as the determined integrated process d, lag 

length p and q for ARIMA model, each model is to be estimated using maximum likelihood estimation method 

in Python 3.  

3.1.5. Model Diagnostics 

 After the chosen model is estimated, diagnostics test is conducted to assess whether the fitted model 

is valid or not4. In order to evaluate a validity of the fitted model, a diagnostics test called Ljung-Box Q test is 

applied on residuals of the fitted model. Ljung-Box Q test, developed by Ljung and Box (1978), tests the null 

hypothesis that residuals autocorrelation is jointly zero, while the alternative hypothesis states that residuals 

are serially correlated. Ljung-Box Q test is computed as follows: 

𝑄𝐿𝐵 = 𝑇(𝑇 + 2) ∑
�̂�𝑘

2

𝑇 − 𝑘

ℎ

𝑘=1

 

 Where 𝑇 is a number of observations in a stationary process; �̂�𝑘 is autocorrelations at lag 𝑘 and ℎ is a 

number of lags being tested. Under the null hypothesis, 𝑄𝐿𝐵 statistics follows Chi-squared distribution (𝜒2). 

If 𝑄𝐿𝐵 statistics is higher than 𝜒2critical value, the null hypothesis is rejected, and if 𝑄𝐿𝐵 statistics is less than 

or equal 𝜒2critical value, the null hypothesis cannot be rejected. If the null hypothesis is rejected, this means 

the fitted model is invalid, which requires model reidentification by either decreasing or increasing lags length 

until the null hypothesis of Ljung-Box Q test cannot be rejected at a 5% significant level. 

3.1.6. Model Forecasting 

 Following confirming that the fitted model possesses white noise residuals, the model can be used to 

do forecasting. Suggested by Stock and Watson (2020), iterated forecast which is one-period or one-step ahead 

forecast is applied. The central idea is that, by exploiting observed time series through period T, the model can 

produce one period forecast T+1. Then, by treating the forecasted value at period T+1 as observed data 

combining with observed time series until period T, the model produces forecast for period T+2. This process 

keeps repeating or iterating until forecast is made for the desired forecast periods.  

3.2. VAR Model 

VAR model, proposed by Sims (1980) in his seminal work, has been extensively used to conduct 

multivariate time series analysis and forecasting. By extending univariate autoregressive model allowing more 

than one variable in the equation, VAR model is able to study a joint dynamic behavior of multiple variables 

and produces forecast. 

 
4 A valid fitted model is a model whose residuals are white noise with zero mean and no serial correlations. 
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3.2.1.  Statistical Background 

 VAR model consists of a system of 𝑘 time series regressions, each of which has an intercept and 𝑝 

lags of each of the 𝑘 time series variables. In other words, VAR model treats all variables symmetrically in a 

structural way. Each variable in the model possesses its own equation describing its relationship based on its 

own lags and lags of other variables. A VAR model with lag p, abbreviated as VAR(p), can be expressed as 

follows: 

𝑌𝑡 = 𝑐 + 𝛱1𝑌𝑡−1 + 𝛱2𝑌𝑡−2 + ⋯ + 𝛱𝑝𝑌𝑡−𝑝 + 𝜀𝑡 = 𝑐 + ∑ 𝛱𝑖𝑌𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

   ;      𝑡 = 1,2, … , 𝑇 

 Where 𝑌𝑡 = (𝑦1𝑡, 𝑦2𝑡, … , 𝑦𝑛𝑡)′ is a (𝑛 × 1) vector of time series variables; 𝑐 is a (𝑛 × 1) vector of 

constants; Π𝑖 is a (𝑛 × 𝑛) vector of coefficient matrices and ε𝑖 is a (𝑛 × 1) vector of an unobservable zero 

mean and white noise process. 

In this paper, two key factors are taken into consideration regarding a choice of variables to use in 

VAR model. First, the chosen variables have to reflect the ongoing structure of the economy as a whole. 

Second, a time series of the chosen variables must be available and in good quality. 

3.2.2. Stationarity Tests 

 Initially, a line graph is used to investigate a time series of each variable. In case of an obvious upward 

or a downward trend, first order differencing is taken to eliminate nonstationary nature of the series. Then, unit 

root tests such as ADF and KPSS tests are applied on each transformed series to verify again. Among all 

variables in the model, if a time series is nonstationary, the differencing is applied on all other series. This 

process is repeated until each series is stationary.  

3.2.3. Model Identification 

 Following conducting necessary data transformations leading to the stationary process for every series, 

AIC and BIC are used to select a lag length of VAR model. Formulas used to compute AIC and BIC are as 

follows:   

 

𝐴𝐼𝐶(𝑝) = −2𝑙𝑛(𝐿) + 2𝑝  

𝐵𝐼𝐶(𝑝) = −2𝑙𝑛(𝐿) + 𝑝𝑙𝑛(𝑇) 

  

Where 𝐿 is a likelihood of the series with a certain model; 𝑝 is a number of parameters in the model 

and 𝑇 is a number of observations in the stationary process. 
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3.2.4. Model Estimation 

 With the selected lag length using AIC and BIC, VAR model is to be estimated using ordinary least 

square estimation method in Python 3. 

3.2.5. Granger Causality Test 

 Unlike AR and ARIMA model, VAR model exploits each of a time series to do forecasting. Hence, 

before proceeding to next steps, it is necessary to make sure whether the chosen explanatory variables are 

useful for forecasting by applying Granger causality test on the estimated coefficients. Granger causality test, 

developed by Granger (1969), test the null hypothesis that past values of explanatory variables does not jointly 

Granger cause an explained variable, while the alternative hypothesis is contrary to the null hypothesis. If the 

null hypothesis cannot be rejected at 5% significant level, other explantory variables need to be considered 

and replaced.  

3.2.6. Model Diagnostics 

 Given the fact that there is a system of 𝑘 equations in VAR model, there are 𝑘 regressions to be 

estimated with 𝑘 residuals to be evaluated. Similar to Ljung-Box Q test, Portmanteau test is applied to assess 

joint 𝑘  residuals from the fitted model. Portmanteau test tests the null hypothesis that autocorrelation of 

residuals from 𝑘 regressions up to certain lag lengths is jointly zero, while the alternative hypothesis states that 

residuals from 𝑘 regressions are serially correlated. If the null hypothesis is rejected, this means the fitted 

model is invalid, which requires model reidentification until the null hypothesis of Portmanteau test cannot be 

rejected at a 5% significant level. 

3.2.7. Model Forecasting 

 Similar to AR and ARIMA model, iterated forecast is used to obtain forecasted values for VAR model. 

3.3. Forecast Accuracy Comparison 

 Following obtaining forecasted values from AR, ARIMA and VAR model, the forecasted values are 

compared to the actual ones and errors are computed. To objectively assess performance of the three models, 

three different metrics are computed and compared against one another. These metrics namely mean absolute 

error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) can be computed 

as follows: 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑡|) 

𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝑒𝑡)2 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 (|
𝑒𝑡

𝑦𝑡
|) 

 The best performing model is the model with the lowest value of all metrics. 
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4. Empirical Results 

This section divides into five main parts. The first part highlights sources and treatment of data. The 

second, third and fourth part discusses results of AR, ARIMA and VAR model. The last part compares forecast 

accuracy of each model and produces five-year ahead forecast with the most accurate model.  

4.1. Data 

 In this paper, every time series is obtained from national accounts of National Institute of Statistics of 

Cambodia. For AR and ARIMA model, real GDP (RGDP) data is used. In addition, real export (REXP) and 

real import (RIMP) of goods and services data are utilized for VAR model. REXP and RIMP variables are 

chosen as explanatory variables based on criteria specified in 3.2.15. These three annual time series are 

available from 1993 to 2020. The real value of the series is calculated using price level of year 2000 as the 

base year. 

Data between 1993 and 2015, which is about 80 percent of the sample size, is used to train the model 

and the rest from 2016 to 2020, which is around 20 percent, is utilized to evaluate forecast accuracy of each 

model. Table 1 shows summary statistics of each time series. Each series is measured in billion riels which is 

the local currency of Cambodia. 

Table 1: Summary Statistics of RGDP, REXP and RIMP 

 Min Mean Max Std 

RGDP 8,521.5 27276.5 56,578.1 15320.5 

REXP 1,322.7 24554.0 69240.5 21263.9 

RIMP 2,722.4 28405.2 78543.9 23836.3 

 

Based on the summary table, each time series is of high and positive value, so natural logarithm 

transformation of every series is taken in order to reduce heteroskedasticity issues. 

4.2. AR model 

4.2.1. Stationarity Tests 

 The line graph of natural logarithm of RGDP shown in Figure 1 clearly exhibits an upward trend 

which is nonstationary. In this sense, first order differencing is needed to transform the series. 

 The first order differencing of natural logarithm of RGDP, ∆𝑙𝑛(𝑅𝐺𝐷𝑃)6, is taken. The line graph of 

∆𝑙𝑛(𝑅𝐺𝐷𝑃) and results of unit root tests of ∆𝑙𝑛(𝑅𝐺𝐷𝑃) are presented in Figure 2 and Table 2, respectively. 

 
5 Cambodia is a small open economy with the size of total international trade both goods and services in real term around 

250 percent of RGDP in 2020. 
6 ∆𝑙𝑛(𝑅𝐺𝐷𝑃) = 𝑙𝑛(𝑅𝐺𝐷𝑃𝑡) − 𝑙𝑛(𝑅𝐺𝐷𝑃𝑡−1), which is a growth rate approximation of RGDP. 
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From the result of ADF test, test statistics (-2.909) is less than critical value at 10% significant level (-2.714) 

but higher than that at 5% significant level (-3.154). This means that the null hypothesis of unit root time series 

cannot be rejected at 5% with ADF test. However, based on the result of KPSS test, given that test statistics 

(0.108) is even less than critical values at 10% significant level (0.347), the null hypothesis of a stationary 

series cannot be rejected even at 10% level with KPSS test. Hence, ∆𝑙𝑛(𝑅𝐺𝐷𝑃) is stationary at 5% significant 

level. 

Figure 1: Line Graph of Natural Logarithm of RGDP 

 
Figure 2: Line Graph of ∆𝒍𝒏(𝑹𝑮𝑫𝑷) 

 

Table 2: ADF and KPSS Unit Root Tests of ∆𝒍𝒏(𝑹𝑮𝑫𝑷) 

 ADF KPSS 

Test Statistics -2.909 0.108 

Critical Value        1% -4.137 0.739 

5% -3.154 0.463 

10% -2.714 0.347 
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4.2.2. Model Identification 

 Following Ghysels and Marcellino (2018), ACF and PACF plot are used to determine lag lengths of 

AR, MA and ARMA model tentatively. Based on Figure 3, there are two noticeable peaks in both ACF and 

PACF plot at first and eleventh lag. However, due to a short series data, only the first peak is considered. From 

the first peak onward, coefficients start going to zero. This process suggests either AR(1), MA(1), or 

ARMA(1,1) model. In this section, only AR model is examined in detail. With the tentative one lag at hand, 

AIC and BIC up to 5 lags are computed and compared against one another to select the most preferred AR 

model. According to Table 3, AIC value (-85.295) and BIC value (-83.113) are the lowest with one lag. This 

means that, among all AR models, AR(1) is the most preferred model.  

 

Figure 3: Autocorrelation and Partial Autocorrelation Plot of ∆𝒍𝒏(𝑹𝑮𝑫𝑷) 
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Table 3: Information Criteria of AR Model with Different Lags 

 AIC BIC 

              Lag             1 -85.295 -83.113 

2 -83.329 -80.056 

3 -83.431 -79.067 

4 -83.338 -77.883 

5 -81.896 -75.349 

 

4.2.3. Model Estimation 

 Table 4 presents the estimates of the preferred AR(1) model. The coefficient of AR(1) model is 

statistically significant at any meaningful levels. 

 

Table 4: Regression Results of AR(1) Model 

Number of observations: 22  
AIC = -85.295 

BIC = -83.113 

 Coefficients Standard error t-statistics p-value [0.025 0.975] 

AR.L1 0.9093 0.108 8.415 0.000 0.698 1.121 

Sigma2 0.0009 0.000 3.629 0.000 0.000 0.001 

 

4.2.4. Model Diagnostics 

 As shown in Figure 4, residuals of the fitted AR(1) model are around zero and autocorrelation of 

residuals are not significantly different from zero given that they are within 95% confidence interval. 

  

Figure 4: Residuals and Autocorrelation of Residuals Plot of AR(1) Model 
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In addition, results of Ljung-Box Q test applied on residuals of the fitted AR(1) model in Table 5 

show that the p-value is always higher than 10% significant level for any lags up to twelve lags. In this sense, 

the null hypothesis of jointly zero residuals autocorrelation or white noise residuals cannot be rejected at 5% 

level, which means AR(1) model is a valid model for forecasting. 

Table 5: Ljung-Box Q Test Results of AR(1) Model 

 Ljung-Box Q Statistics p-value 

Lag              1 0.157 0.691 

2 2.780 0.249 

3 4.142 0.246 

4 4.172 0.383 

5 4.444 0.487 

6 4.705 0.582 

7 4.705 0.695 

8 4.889 0.769 

9 5.736 0.765 

10 7.619 0.665 

11 8.910 0.630 

12 10.267 0.592 

 

4.2.5. Model Forecasting 

Applying the fitted AR(1) model with iterated forecast approach, forecasted values of RGDP can be 

obtained and presented in Figure 5 and Table 6. Regarding in-sample forecast, AR(1) model fails to forecast 

indirect effects of Global Financial Crisis on Cambodia’s economy in 2009. In terms of out-sample forecast, 
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compared to actual real economic activities, AR(1) model forecasts relatively lower activities and the gap 

keeps widening as forecast horizons increase except in 2020 due to Covid-19 shock. 

 

Figure 5: Graphical Comparison of AR(1) Model Forecasting to Actual RGDP 

 

Table 6: Forecasted Results of AR(1) Model 

Year Actual RGDP Forecasted RGDP Forecasted Growth Rate Error 

2016 45,999.748 45,752.492 6.38% -0.54% 

2017 49,176.889 48,398.579 5.78% -1.58% 

2018 52,849.994 50,937.362 5.25% -3.62% 

2019 56,578.089 53,361.375 4.76% -5.69% 

2020 54,454.336 55,665.595 4.32% 2.22% 

 

4.3. ARIMA model 

4.3.1. Stationarity Tests 

 As discussed in 4.2.1, ∆𝑙𝑛(𝑅𝐺𝐷𝑃) is a stationary process. Hence, the order of integration is one for 

ARIMA model. 

4.3.2. Model Identification 

 Again, ACF and PACF plots suggest either MA(1) or ARMA(1,1) model. However, according to 

Table 7, AIC value (-86.380) and BIC value (-82.016) are the lowest with one lag for AR term and two lags 

for MA term. Hence, among all ARIMA models, ARIMA(1,1,2) is the most preferred model. 
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Table 7: Information Criteria of ARIMA Model with Different Specifications 

ARIMA Model AIC BIC 

(0,1,1) -65.901 -63.719 

(1,1,1) -83.717 -80.444 

(2,1,1) -81.347 -76.983 

(0,1,2) -71.536 -68.263 

(1,1,2) -86.380 -82.016 

(2,1,2) -83.512 -78.056 

(3,1,2) -82.433 -75.887 

(0,1,3) -75.001 -70.637 

(1,1,3) -84.569 -79.114 

(2,1,3) -82.911 -76.365 

(3,1,3) -81.008 -73.371 

(4,1,3) -78.676 -69.948 

 

4.3.3. Model Estimation 

Table 8 presents the estimates of the preferred ARIMA(1,1,2) model. The coefficient of AR(1) term 

is statistically significant at any meaningful levels, while that of MA(1) and MA(2) term are not statistically 

significant different from zero. 

 

Table 8: Regression Results of ARIMA(1,1,2) Model 

Number of observations: 22  
AIC = -86.380 

BIC = -82.016 

 Coefficients Standard error t-statistics p-value [0.025 0.975] 

AR.L1 0.9994 0.010 98.536 0.000 0.980 1.019 

MA.L1 -0.4590 0.528 -0.870 0.385 -1.494 0.576 

MA.L2 -0.4532 0.371 -1.221 0.222 -1.181 0.274 

Sigma2 0.0007 0.000 1.823 0.068 -0.00005 0.001 

 

4.3.4. Model Diagnostics 

 Based on Figure 6, residuals of the fitted ARIMA(1,1,2) model are around zero and autocorrelation 

of residuals are not significantly different from zero given that they are within 95% confidence interval. 
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Figure 6: Residuals and Autocorrelation of Residuals Plots of ARIMA(1,1,2) Model 

 

 

In addition, results of Ljung-Box Q test applied on residuals of the fitted ARIMA(1,1,2) model in 

Table 9 show that the p-value is always higher than 10% significant level for any lags up to twelve lags. In 

this sense, the null hypothesis of jointly zero residuals autocorrelation or white noise residuals cannot be 

rejected at 5% level, which means ARIMA(1,1,2) model is a valid model for forecasting. 

Table 9: Ljung-Box Q Test Results of ARIMA(1,1,2) Model 

 Ljung-Box Q Statistics p-value 

Lag               1 0.004 0.946 

2 0.040 0.980 

3 1.362 0.714 

4 1.436 0.837 

5 1.503 0.912 

6 1.950 0.924 

7 1.983 0.960 
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8 1.985 0.981 

9 3.104 0.959 

10 5.020 0.889 

11 5.377 0.911 

12 5.608 0.934 

 

4.3.5. Model Forecasting 

Applying the fitted ARIMA(1,1,2) model with iterated forecast approach, forecasted values of RGDP 

are obtained and presented in Figure 7 and Table 10. Regarding in-sample forecast, ARIMA(1,1,2) model 

also fails to forecast indirect effects of Global Financial Crisis on Cambodia’s economy in 2009. In terms of 

out-sample forecast, compared to actual real economic activities, ARIMA(1,1,2) model forecasts marginally 

higher activities until 2019 with less than 1% error. Due to Covid-19 shock, the error increases significantly 

in 2020. 

Figure 7: Graphical Comparison of ARIMA(1,1,2) Model Forecasting to Actual RGDP 

 
Table 10: Forecasted Results of ARIMA(1,1,2) Model 

Year Actual RGDP Forecasted RGDP Forecasted Growth Rate Error 

2016 45,999.748 46,128.242 7.25% 0.28% 

2017 49,176.889 49,516.826 7.35% 0.69% 

2018 52,849.994 53,152.219 7.34% 0.57% 

2019 56,578.089 57,052.244 7.34% 0.84% 

2020 54,454.336 61,235.996 7.33% 12.45% 
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4.4. VAR model 

4.4.1. Stationarity Tests 

The line graph of natural logarithm of REXP and RIMP shown in Figure 8 clearly exhibits an upward 

trend which is nonstationary. A first order differencing of natural logarithm of REXP and RIMP, ∆𝑙𝑛(𝑅𝐸𝑋𝑃) 

and ∆𝑙𝑛(𝑅𝐼𝑀𝑃), are taken. The line graph of ∆𝑙𝑛(𝑅𝐸𝑋𝑃) and ∆𝑙𝑛(𝑅𝐼𝑀𝑃) and results of unit root tests are 

presented in Figure 9, Table 11 and Table 12, respectively.  

From Table 11, the ADF test statistics of ∆𝑙𝑛(𝑅𝐸𝑥𝑝) (-6.128) is less than critical value even at 1% 

significant level (-3.788). This means that the null hypothesis of unit root time series can be rejected at 1% 

level. From Table 12, the ADF test statistics of ∆𝑙𝑛(𝑅𝐸𝐼𝑀𝑃) (-2.245) is more than critical value at 10% 

significant level (-2.714). This means that the null hypothesis of unit root time series cannot be rejected at 10% 

level with ADF test. However, the KPSS test statistics of ∆𝑙𝑛(𝑅𝐼𝑀𝑃) (0.138) are less than critical values even 

at 10% significant level (0.347), which means the null hypothesis of a stationary time series cannot be rejected 

at 10% level with KPSS test. Hence, ∆𝑙𝑛(𝑅𝐸𝑋𝑃) and ∆𝑙𝑛(𝑅𝐼𝑀𝑃) are stationary at a 5% significant level. 

Figure 8: Line Graph of Natural Logarithm of REXP and RIMP 
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Figure 9: Line Graph of ∆𝒍𝒏(𝑹𝑬𝑿𝑷) and ∆𝒍𝒏(𝑹𝑰𝑴𝑷) 

 

 

Table 11: ADF and KPSS Unit Root Tests of ∆𝒍𝒏(𝑹𝑬𝑿𝑷) 

 ADF KPSS 

Test Statistics -6.128 0.359 

Critical Value        1% -3.788 0.739 

5% -3.013 0.463 

10% -2.646 0.347 

 

Table 12: ADF and KPSS Unit Root Tests of ∆𝒍𝒏(𝑹𝑰𝑴𝑷) 

 ADF KPSS 

Test Statistics -2.245 0.138 

Critical Value        1% -4.137 0.739 

5% -3.154 0.463 

10% -2.714 0.347 
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4.4.2. Model Identification 

 Due to a small number of stationary observations of ∆𝑙𝑛(𝑅𝐺𝐷𝑃), ∆𝑙𝑛(𝑅𝐸𝑋𝑃) and ∆𝑙𝑛(𝑅𝐼𝑀𝑃), only 

up to four lags are allowed in VAR model. According to Table 13, AIC value (-21.55) and BIC value (-19.62) 

are the lowest with four lags. Hence, among all VAR models, VAR(4) is the most preferred model.  

Table 13: Information Criteria of VAR Model with Different Lags 

 AIC BIC 

              Lag             1 -17.70 -17.10 

2 -18.16 -17.11 

3 -19.55 -18.06 

4 -21.55 -19.62 

 

4.4.3. Model Estimation 

Table 14 presents the estimates of the preferred VAR(4) model. In RGDP and REXP equation, most 

of the estimated coefficients are statistically significant at 5% significant level, while only a few of those are 

statistically significant at 5% level in RIMP equation. 

Table 14: Regression Results of VAR(4) Model 

Number of observations: 18  
AIC = -21.55 

BIC = -19.62 

Results for RGDP equation   

 Coefficients Standard error t-statistics p-value 

constant 0.107 0.035 3.059 0.002 

L1.RGDP 1.766 0.361 4.890  0.000 

L1.REXP -0.187 0.161 -1.161 0.246 

L1.RIMP -0.599 0.152 -3.930  0.000 

L2.RGDP 0.562 0.579 0.972 0.331 

L2.REXP 0.194 0.083 2.335 0.020 

L2.RIMP -0.462 0.215 -2.141 0.032 

L3.RGDP -2.197 0.740 -2.968  0.003 

L3.REXP 0.313 0.130 2.405 0.016 

L3.RIMP 0.019 0.150 0.130 0.897 

L4.RGDP 0.855 0.378 2.258 0.024 

L4.REXP 0.223 0.108 2.063 0.039 

L4.RIMP -0.390 0.182 -2.137 0.033 
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Results for REXP equation 
 

  

 Coefficients Standard error t-statistics p-value 

constant 0.320 0.064 4.938 0.000 

L1.RGDP 4.536 0.667 6.797  0.000 

L1.REXP -0.232 0.298 -0.778 0.436 

L1.RIMP -1.786 0.281 -6.337  0.000 

L2.RGDP -1.975 1.069 -1.846  0.065 

L2.REXP 0.854 0.153 5.566 0.000 

L2.RIMP -1.178 0.398 -2.957 0.003 

L3.RGDP -1.959 1.367 -1.433 0.152 

L3.REXP 1.018 0.241 4.223  0.000 

L3.RIMP -1.108 0.278 -3.987  0.000 

L4.RGDP 1.742 0.699 2.490 0.013 

L4.REXP 0.620 0.200 3.097  0.002 

L4.RIMP -1.23 0.337 -3.661  0.000 

 

Results for RIMP equation 
 

  

 Coefficients Standard error t-statistics p-value 

constant 0.251 0.111 2.250 0.024 

L1.RGDP 3.735 1.146 3.257 0.001 

L1.REXP -0.147 0.512 -0.288 0.773 

L1.RIMP -1.443 0.484 -2.980 0.003 

L2.RGDP -1.569 1.838 -0.854 0.393 

L2.REXP 0.640 0.263 2.429  0.015 

L2.RIMP -0.887 0.684 -1.296 0.195 

L3.RGDP -0.954 2.349 -0.406  0.685 

L3.REXP 0.697 0.414 1.684 0.092 

L3.RIMP -0.789 0.477 -1.653  0.098 

L4.RGDP 0.809 1.202 0.673  0.501 

L4.REXP 0.307 0.344 0.893 0.372 

L4.RIMP -0.678 0.579 -1.171  0.242 
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4.4.4. Granger Causality Test 

 According to Table 15, the test statistics of Granger causality test (3.418) is higher than critical value 

at 5% significant level (2.641). This means the null hypothesis that joint four-period past values of REXP and 

RIMP do not Granger cause RGDP can be rejected at 5% level. Hence, REXP and RIMP explanatory variables 

with four lags are able to jointly forecast RGDP. 

 

Table 15: Granger Causality Test Results of VAR(4) 

Test Statistics 3.418 

Critical Value        1% 4.004 

5% 2.641 

10% 2.119 

 

4.4.5. Model Diagnostics 

Table 16 shows results of Portmanteau test on joint twelve lags residuals of VAR(4) model. The test 

statistics (83.00) is less than critical value even at 10% significant level (87.74). This means the null hypothesis 

that autocorrelation of residuals up to twelve lags is jointly zero cannot be rejected at 5% level. Hence, VAR(4) 

model is a valid model for forecasting. 

 

Table 16: Portmanteau Test Results of VAR(4) Model 

Test Statistics 83.00 

Critical Value        1% 102.8 

5% 92.81 

10% 87.74 

 

4.4.6. Model Forecasting 

Applying the fitted VAR(4) model with iterated forecast approach, forecasted values of RGDP are 

obtained and presented in Figure 10 and Table 17. Regarding in-sample forecast, similar to AR(1) and 

ARIMA(1,1,2), VAR(4) model cannot forecast indirect effects of Global Financial Crisis on Cambodia’s 

economy in 2009. In terms of out-sample forecast, compared to actual real economic activities, VAR(4) model 

forecasts relatively higher activities for all forecast horizons until 2019 and the error gets worse in 2020 due 

to Covid-19 shock. 
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Figure 10: Graphical Comparison of VAR(4) Model Forecasting to Actual RGDP 

 

 

Table 17: Forecasted Results of VAR(4) Model 

Year Actual RGDP Forecasted RGDP Forecasted Growth Rate Error 

2016 45,999.748 47,829.556 11.21% 3.98% 

2017 49,176.889 52,508.679 9.78% 6.78% 

2018 52,849.994 56,050.104 6.74% 6.06% 

2019 56,578.089 59,183.711 5.59% 4.61% 

2020 54,454.336 61,998.046 4.76% 13.48% 

 

4.5. Forecast Accuracy Comparison 

Figure 11 provides a visual comparison of actual RGDP against forecasted values from AR(1), 

ARIMA(1,1,2) and VAR(4) between 2016 and 2020. Overall, all models forecast an upward trend of real 

economic activities. This is not surprising due to the consistent development of Cambodia’s economy, 

reflecting in positive growth rate in the training dataset. Compared to actual real economic activities, 

ARIMA(1,1,2) model produces quite accurate forecasts from 2016 to 2019. All models fail to forecast the 

downturn in 2020 which is caused by Covid-19 shock.  
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Figure 11: Line Graph of Actual RGDP and Forecasted Values from Different Models 

 

  

Forecast accuracy metrics namely MAE, RMSE and MAPE are computed in order to evaluate the 

performance of each model. For objective assessment, only forecasted values between 2016 and 2019 are used 

to compute the metrics. According to Table 18, ARIMA(1,1,2) model produces the lowest MAE (311.20), 

RMSE (334.75) and MAPE (0.60). Hence, ARIMA(1,1,2) model is the best performing model among these 

three models. Therefore, ARIMA(1,1,2) model can be applied for practical forecasting analysis with a high 

precision.  

 

Table 18: Forecast Accuracy Metrics of Different Models 

 AR(1) ARIMA(1,1,2) VAR(4) 

MAE 1,538.73 311.20 2,741.83 

RMSE 1,915.22 334.75 2,805.31 

MAPE 2.86 0.60 5.35 

 

 By applying the best performing model with the series from 1993 to 2020, baseline future economic 

development for the next five years can be forecasted. Based on Table 19 and Figure 12, Cambodia’s economy 

is still overcoming the adverse impacts of Covid-19 shock in 2021 with a negative growth rate (-0.57%), then 

recovering from the shock in 2022 with a positive growth rate about 3.48% per year until 2025. However, the 
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growth path of Cambodia’s economy after Covid-19 crisis does not seem to be converging to that before 

Covid-19 shock in the near term without major government’s interventions aiming to boost the economy.   

 

Table 19: Forecast of ARIMA(1,1,2) Model 

Year Forecasted RGDP Forecasted Growth Rate 

2021 54,146.243 -0.57% 

2022 56,071.815 3.56% 

2023 58,039.910 3.51% 

2024 60,050.575 3.46% 

2025 62,103.830 3.42% 

 

Figure 12: Line Graph of Forecasted RGDP from ARIMA(1,1,2) 

 

5. Summary and Conclusion 

The paper aims to test which of the three simple time series models namely AR, ARIMA and VAR 

model performs the best in forecasting the real GDP of Cambodia’s economy given the limited available time 

series data. Annual observations of RGDP, REXP and RIMP from 1993 to 2020 are used for the empirical 

analysis. The series is split into two sets which are training set and testing set. The former consisting of about 

80 percent of the sample size (between 1993 and 2015) is used to fit the model, while the latter consisting of 

around 20 percent (from 2016 to 2020) is used to evaluate forecast accuracy.  
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 By applying a graphical method and unit roots test, the first order differencing of RGDP, ∆𝑙𝑛(𝑅𝐺𝐷𝑃) 

is concluded as a stationary process. Then, in addition to inspecting plot of autocorrelation and partial 

autocorrelation, information criteria confirms AR(1) and ARIMA(1,1,2) as the most preferred models given 

the training dataset. Following estimating the preferred models by maximum likelihood estimation, residuals 

of the fitted models are evaluated using Ljung-Box Q test which then determines residuals of both models are 

white noise. With iterated forecast approach, AR(1) and ARIMA(1,1,2) forecast an average growth rate of 

5.30% and 7.32% for RGDP between 2016 and 2020, respectively. With respect to VAR model, REXP and 

RIMP variables are chosen as explanatory variables. In a similar process, ∆𝑙𝑛(𝑅𝐸𝑋𝑃) and ∆𝑙𝑛(𝑅𝐼𝑀𝑃) are 

stationary and VAR(4) is chosen as the most preferred model using information criterion. Applying ordinary 

least square estimation, estimated coefficients of VAR(4) are obtained and then utilized to conduct Granger 

causality test, while residuals of the fitted model are used to run Portmanteau test. Both tests conclude that 

VAR(4) is a valid forecasting model. With iterated forecast approach, VAR(4) forecasts an average growth 

rate of 7.62% for RGDP from 2016 to 2020. 

 Given the consistent positive development over the past few decades, AR(1), ARIMA(1,1,2) and 

VAR(4) forecast increased economic activities for all forecast horizons between 2016 and 2020. However, 

except the unexpected Covid-19 shock in 2020, AR(1) and VAR(4) models tend to relatively under-forecast 

and over-forecast economic activities, respectively, while ARIMA(1,1,2) model produces a slightly above real 

economic development. In terms of forecast accuracy metrics, ARIMA(1,1,2) model produces the most 

accurate forecast with the lowest value of MAE (311.20), RMSE (334.75) and MAPE (0.60). For future 

development, ARIMA(1,1,2) model expects a negative growth rate of -0.57% for RGDP in 2021, then forecasts 

a positive economic development with an average growth rate of 3.48% from 2022 to 2025. However, unless 

there are significant policy packages aiming to boost domestic economy, the post Covid-19 growth path is 

more likely to diverge from the one before Covid-19 shock. 

 In conclusion, in data scarce environment like Cambodia, a simple ARIMA model can be used to 

produce short- and medium-term forecasts to get a preview of economic development path in the future. 

However, the forecasts from the model are baseline forecasts which assumes that there are no policy changes 

or major internal or external shocks. In this regard, with baseline forecasts at hands, policy makers and central 

bankers are able to come up with development plans and policies in a timely manner so that their desired 

development paths could be achieved. Last but not least, even as the most precise model among those studied 

in this paper, ARIMA(1,1,2) is unable to detect the emerging shock to the economy. This limitation requires 

further studies into more sophisticated models such as ARIMA model with an exogenous variable (ARIMAX) 

or VAR model with an exogenous variable (VARX).   
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