デジタルサイネージ導入の費用便益分析
目次
概要（Executive Summary） ... 3
第1節：はじめに .. 4
第2節：分析の枠組み .. 6
 2.1 当事者適格 .. 6
 2.2 政策ケース .. 6
第3節：設置と利用に関する仮定 ... 6
 3.1. 設置場所 ... 6
 3.2. 導入時期 ... 7
 3.3. デジサイの機能等 .. 7
 3.4. 利用可能人数 .. 7
 3.5. 社会的割引率（純現在価値算定に使用する割引率）と時間価値の設定 9
第4節：デジサイ導入の費用 .. 9
 4.1. 設置費用 ... 9
 4.2. 観光情報配信業務 ... 10
 4.3. 設置場所調査委託費 ... 10
 4.4. 利用調査委託費 .. 10
 4.5. 通信費（光ファイバー） ... 10
 4.6. 通信費（Wi-Fi） .. 11
 4.7. 電気代 ... 11
第5節：デジサイ導入の便益 .. 14
 5.1. 地図情報の便益 .. 14
 5.2. 観光情報の便益 ... 19
 5.3. 災害情報の便益 .. 20
 5.4. Wi-Fi 便益 ... 24
第6節：デジサイ導入の純便益 ... 27
 6.1. 純便益（ベースケース）の結果 27
 6.2. 純便益の感度分析 ... 27
第7節：考察 ... 29
 7.1. 実地調査を行う上での留意点 29
 7.2. 政策的含意 ... 29
 7.3. 今後の課題 ... 29
謝辞 ... 30
参考文献 ... 31
概要（Executive Summary）

訪日外国人の増加や、東京オリンピックを控えて、東京都では公共空間等におけるデジタルサイネージ（以下、デジサイ）の有用性が高まりつつある。東京都では、今後様々な場所においてデジサイの導入を進める計画があるが、導入に際して費用便益の観点から詳細に分析がなされているわけではない。そこで本研究では、東京都がデジサイを交通拠点、公共施設等に導入することについて、導入の是非の判断基準の一つとして資することを目的として、事前の費用便益分析を行った。

当事者適格を世界、導入の主体は東京都として、with ケースに東京都がデジタルサイネージを駅前とオリンピック会場に計 100 基導入した場合を、without ケースは 1 基も新規に導入しない場合を想定した。評価期間は 2017 年から 2021 年であり、デジタルサイネージの機能については、東京都の計画に従い、地図機能、観光情報を提供する機能、災害時の情報提供機能、Wi-Fi による通信機能を想定し、それぞれの便益について検討した。

結果としては、デジタルサイネージ導入による費用がそれにより得られる便益を約 9000 万円上回る結果となった。費用の内訳を見ると、全費用 11.7 億円のうち設置費用が 10 億円を占める結果となった。

第一節 はじめに

デジタルサイネージ（以下「デジサイ」という。）とは、「屋外・店頭・公共空間・交通機関など、あらゆる場所で、ネットワークに接続したディスプレイなどの電子的な表示機器を使って情報を発信するシステム」を指す。

図 1. 上野駅に設置されたデジタルサイネージ

近年、大規模商業施設や駅などで着々と導入が進みつつあり、また、2020年東京オリンピックの「大会開催基本計画（Games Foundation Plan）」においてもデジタルサイネージの大規模整備が掲げられている。しかしながら、その経済分析に関しては、大手
コンサルによる「デジタルサイネージの波及効果」に関する研究は存在するものの、「デジタルサイネージの費用便益分析」に関してはまだ研究が進んでいないのが現状である。本研究は、初めての試みとして費用便益分析を行うことで、今後、地方自治体がデジタルサイネージを交通拠点、公共施設等に導入することについて、導入の是非の判断基準の一つとして資することを目的として、事前の費用便益分析を行う。
第2章：分析の枠組み

2.1 当事者適格

本研究では、当事者適格を「世界」とする。デジタルサイネージを設置する主体は東京都であるが、その設置目的は訪日外国人の受入環境の整備であり、東京都及び日本に居住する者だけでなく世界各地から東京都を訪問する外国人観光客もデジタルサイネージの恩恵を受けることが想定されているためである。

2.2 政策ケース

東京都は平成26年に公表した「外国人旅行者の受入環境整備方針」において、2020年までに歩行空間に100基のデジタルサイネージを設置するとしており、本研究においてはWithケースを「東京都がデジタルサイネージ100基を公共空間に設置する」とし、withoutケースを「現状維持（デジタルサイネージを導入しない）」とする。

平成26年12月「外国人旅行者の受入環境整備方針～世界一のおもてなし都市・東京の実現に向けて～」東京都
平成26年12月「外国人旅行者の受入環境整備方針～世界一のおもてなし都市・東京の実現に向けて～」東京都 p20
第3節：設置と利用に関する仮定

東京都の計画「外国人旅行者の受入環境整備方針」をもとに、デジタルサイネージの設置と利用に関し、以下の通り具体的な内容を仮定する。

3.1. 設置場所

設置基数は上述のとおり100基とするが、内訳としてオリンピック会場に33基、東京都が定めた重点整備エリアの駅前に67基を設置することとする。オリンピック会場については、国土交通省が設置した「2020年オリンピック・パラリンピック東京大会準備本部」の資料に基づき33箇所とし、1箇所に1基当たり設置すると仮定するものである。重点整備エリアは、外国人旅行客が多く訪れる地域として東京都が指定した10地域であり、①新宿・大久保、②銀座、③浅草、④渋谷、⑤東京駅周辺・丸の内・日本橋、⑥秋葉原、⑦上野、⑧原宿・表参道・青山、⑨基場、⑩六本木・赤坂が指定されている。当該エリアのうち具体的にどの場所に設置するかによってデジサイの利用者数の推計が異なるため、本研究では重点整備エリア内に存在する複数の駅のうち、平均的な利用者数が見込める駅を仮想的に設定し、その駅前に67基設置すると仮定する。

3.2. 導入時期

東京都の計画では2020年までに順次100基を導入することとしているが、導入のタイミングや基数が明らかではないため、本研究では、駅前のサイネージ67基については2017年1月から、オリンピック会場については開催直前の2020年1月から導入するものと仮定する。デジサイの制作にかかる仕様書によれば、デジサイの耐用年数は5年と設定されているため、2017年に導入した67基については2021年までとなる。また、オリンピック会場の33基については耐用年数を残して同時期に運用を停止すると仮定し2021年までとする。

4 平成26年12月「外国人旅行者の受入環境整備方針～世界一のおもてなし都市・東京の実現に向けて～」東京都p8
5 国土交通省 2020年オリンピック・パラリンピック東京大会準備本部 第1回資料 資料3 http://www.mlit.go.jp/sogoseisaku/point/sosei_point_tk_000016.html
6 具体的には、重点整備エリア内に存在する駅（JR/私鉄含む）をすべてピックアップして昼間人口を調べ、その平均をとった規模の駅を想定することとした。
7 平成27年9月24日「高機能型観光案内標識（デジタルサイネージ）の制作・運用に関する業務委託」東京観光財団入札情報
表 1. 設置期間

<table>
<thead>
<tr>
<th></th>
<th>2017 年</th>
<th>2018 年</th>
<th>2019 年</th>
<th>2020 年</th>
<th>2021 年</th>
</tr>
</thead>
<tbody>
<tr>
<td>駅前 67 基</td>
<td></td>
<td>設置（5年間）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>会場 33 基</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>設置（2年間）</td>
</tr>
</tbody>
</table>

出典：筆者作成

3.3. デジサイの機能等

デジサイには様々な機能があるが、本研究では東京都の資料を含め、主な機能として①地図情報配信機能、②観光情報配信機能、③災害情報配信機能、④Wi-Fi 提供機能であると設定した。よって、これらの機能ごとに便益を推計することとする。

また、これらの機能に横断する形で多言語翻訳機能が搭載されており、訪日外国人も同様の便益を受けられる形となっているため、日本人と訪日外国人の便益の比重については同等と扱うこととする。

3.4. 利用可能人数

駅前に設置するデジサイを実際に利用する人数を以下の式で考える。

実際の利用人数（人） = 利用可能人数（人） × 利用割合（%）

この式から、利用割合が一定であれば、利用人数はデジサイを利用する可能性のある人数に基づき、便益も利用可能人数に基づき計算する。駅前のデジサイを利用する可能性のある人数は、駅の乗降者数と考えられるが、大規模駅と小規模駅では乗降者数は大幅に異なるため、先述のとおり「平均的な利用者数が見込める駅を仮想的に設定」する必要がある。

利用可能人数の算出についての考え方としては、設置場所が駅前かオリンピック会場か、利用される時期が通常期間かオリンピック実施の 30 日間かで推計を区別する必要があるということである。利用可能人数は機能ごとに根拠を異にしており、例えば地図情報配信機能では駅の乗降者数であったり、Wi-Fi 提供機能の利用可能人数については電波のカバー率であったり、それぞれ算出しているため、詳細は各便益の項で説明する。

——

8 平成 27 年 9 月 24 日「高機能型観光案内標識（デジタルサイネージ）の制作・運用に関する業務委託」東京都観光財団入札情報より、「地図情報」及び「災害情報」Wi-Fi サービスの提供を確認。平成 28 年 2 月「東京都長期ビジョン平成 28 年度の事業展開」より、「観光情報」及び「災害情報」の提供を確認。

9 2020 年 7 月 24 日～8 月 9 日の 17 日間（オリンピック）、2020 年 8/25～9 月 6 日の 13 日間（パラリンピック）合わせて 30 日間
3.5. 社会的割引率（純現在価値算定に使用する割引率）と時間価値の設定
一般的な費用便益分析で用いられる社会的割引率として4％とした。
時間価値については、「時間価値原単位および走行経費原単位（平成20年価格）の算出方法」10における、非業務目的の自動車等の同乗者の機会費用をもとに、1496円/時とした。

10国土交通省「時間価値原単位および走行経費原単位（平成20年価格）の算出方法」
第4節：デジサイ導入の費用

デジタルサイネージ導入の費用を推計するに当たり、東京都が目指すデジタルサイネージへの情報配信の流れと関係者へのヒアリングより、費用項目を1 設置費用、2 観光情報配信業務（サーバー管理・観光コンテンツ料金含む）3 設置場所調査委託費、4 利用調査委託費、5 通信費（光ファイバー）、6 通信費（Wi-Fi）、7 電気代と想定した。これらを項目ごとに推計し、合算した全体費用としては32 億 3472 万円となった。以下、項目ごとに内訳を説明する。

4.1. 設置費用

関係者からのヒアリングにより地図情報の初期コンテンツを含むと仮定したうえで設置費用は1 基あたり1000 万円とし、100 基を乗じて、設置費用全体は10 億円となった。

4.2. 観光情報配信業務

観光情報配信業務の費用は、関係者からのヒアリングを参考とし、一般的な業務委託の内容を仮定することで推計した。仮定の内容は、デジサイの規模を問わず10 基当たり観光情報を年間50 件提供し、サーバー管理及びソフトウエアのライセンス管理を行うというもので、10 基当たり初年度は850 万円、次年度以降はコンテンツ使用料等で100 万円というものである。2017 年より重点整備エリアに設置する67 基については5 年間設置するため、初年度850 万円＋次年度100 万円×4 年、オリンピック会場については、2020 年より2 年間設置するため、初年度850 万円＋次年度100 万円×1 年を計上し、全体としては1 億1510 万円となった。

4.3. 設置場所調査委託費

デジサイの設置場所調査委託費は、東京観光財団の入札情報1を参考としたもので、デジサイの設置場所として利用者が多く設置効果が高い場所であること、各種インフラ（電源・回線等）が利用可能であるかを調査するものである。経過調書を見ると189 万円で落札されているため、1 回あたりの単価を190 万円と仮定した。また、年に1 回5 年間実施2すると190 万円×5 年で950 万円とした。

1 平成28年4月19日「高機能型観光案内標識（デジタルサイネージ）の設置に関する調査委託」東京観光財団入札情報
2 設置場所調査委託費については東京都の計画（2016年から2020年までの順次導入）にらって算出。
4.4. 利用調査委託費

デジサイの利用調査委託費は、東京観光財団の入札情報13を参考としたもので、初年度に設置したデジサイの利用実態を調査しその後の設置計画に利用するものであるから、1回実施14するものと仮定した。また、公表されている経過調書では120万円で予定価格を上回ったことによる入札不調となっていることから、100万程度を予定価格と仮定し、1回を想定しているので利用調査委託費全体としては100万円となった。

4.5. 通信費（光ファイバー）

通信費については、デジサイの利用者が利用するWi-Fi（無線）と、コンテンツ情報などの更新をするために用いる光ファイバー（有線）がある。光ファイバーは、デジサイ1基につき1回線を引き込んでいると仮定し、NTT東日本のフレッツネクスト業務用プロバイダ込みプラン10タイプ（それぞれプロバイダーが異なる）の平均値5,568円を月額単価として使用した。初期費用はNTT東日本の同プランの初期工事費19,400円とした。重点整備エリアに設置する67回線分については月額5,568円で5年間、オリンピック会場に設置する33回線分については月額5,568円で2年間を計上し、別途初期工事費19,400円を100回線分計上した結果、通信費（光ファイバー）は約2,873万円となった。

4.6. 通信費（Wi-Fi）

東京都のWi-Fiサービスは「FREE Wi-Fi & TOKYO」というブランドで展開しており、デジサイのみならず都立施設に一体とした整備を行なっている。そのため、デジサイのみの整備金額を割り出すことは不可能であるため、光ファイバーの通信プランに、Wi-Fiのエリアオーナー向け商品をオプションで追加する金額500円を単価として使用することとした。重点整備エリアに設置する67回線分については月額500円で5年間、オリンピック会場に設置する33回線分については月額500円で2年間を計上した結果、全体としては300万円と推計された。ただし、エリアオーナー向けの当該商品はカフェ等を営む個人事業主向けの商品であると考えられ、デジサイの場合は、屋外であることや通信範囲をより大きく設定することが考えられ、実際は当該推計値より大きくなる可能性もある。

13 平成28年10月24日「高機能型観光案内標識（デジタルサイネージ）の利用実態等調査」
東京観光財団入札情報
14 利用調査委託費については東京都の計画（初年度導入4基分）にならって算出。
4.7 電気代

電気代については、東京電力の単価を使い電力会社の HP で公開されている算出方法を用いて計算した。

まず、東京都のデジサイ制作に関する仕様書15の内容に該当するデジサイのディスプレイ商品を、落札事業者の HP から特定し、その消費電力（270w）から、1ヶ月あたりの使用電力量を求めた。同仕様書から、1日当たりのデジサイ稼働時間は朝6時から夜12時までであるため、1日あたりの使用時間を18時間、1ヶ月あたりの使用時間を549時間（18時間×30.5日）として、1か月あたりの使用電力量は148.23kwh と算出した。

次に、1ヶ月あたりの契約電力を仮定する必要があるが、デジタルサイネージ関係者からのヒアリングにより契約電力は家庭用 20A（アンペア）とし、契約メニューは標準プランの「従量電灯 B」と仮定した。

契約電量と契約メニューの電気料金算出式に、算出した使用電力量148.23kwh を当てはめ、月額の電気代を求める。電気代は（1）基本料金、（2）電力量料金、（3）再生可能エネルギー発電促進賦課金の合計から成り、それぞれの求める方は以下のとおりである16。(2)電力量料金の計算式については、使用電力量が「使用電力量が120kWh をこえる300kWh までの場合」を用いた。

表 1	基本料金（円） = 契約アンペア（10A〜60A）ごとの基本料金（円）	(1)
基本料金（円） = 120kWh × 19 円52 銭 + 26 円00 銭 × (使用電力量 - 120kWh) + 燃料費調整額（-4.72/Kwh × 使用電力量）	(2)	
再エネ発電賦課金（円） = 再エネ開発促進賦課金単価（円/kwh） × 1か月の使用電気力（kwh）	(3)	

数式(1)は、東京電力エナジーパートナーの HP17 によれば、契約電力 20A の基本料金は 561.60（円/月・税込）である。数式(2)については、使用電力量 148.23kwh を当てはめ、燃料費調整額は、燃料費調整一覧18より、平成 28 年 12 月の単価を使用しました。

15 平成27年9月24日「高機能型観光案内標識（デジタルサイネージ）の制作・運用に関する業務委託」東京観光財団入札情報
16 東京電力エナジーパートナー個人のお客様 主な契約種別の料金計算式
http://www.tepco.co.jp/ep/private/plan2/chargelist04.html#sec03
17 東京電力エナジーパートナー個人のお客様 ご契約アンペアの選び方
http://www.tepco.co.jp/ep/private/ampere2/ampere02.html
18 東京電力エナジーパートナー 過去の燃料費調整一覧（個人）
http://www.tepco.co.jp/ep/private/fuelcost2/backnumber/1612.html
イナス4.72円/kwhとした。数式(3)については、東京電力ホールディングスのHP\(^{19}\)より、平成28年5月から平成29年4月までの単価として定められている2.25円/kwh用いた。以上より、1ヶ月あたりの1基分の電気料金（税抜）を求めると、以下のとおりである。

表2. 電気料金（月額・1基）

<table>
<thead>
<tr>
<th></th>
<th>費用</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)基本料金</td>
<td>561.6円((a))</td>
</tr>
<tr>
<td>(2)電力量料金</td>
<td></td>
</tr>
<tr>
<td>電力量料金</td>
<td>3,076円((b))</td>
</tr>
<tr>
<td>使用電力量120kWh~300kWh</td>
<td></td>
</tr>
<tr>
<td>燃料費調整額</td>
<td>-699.65円((c))</td>
</tr>
<tr>
<td>2016年12月の額</td>
<td></td>
</tr>
<tr>
<td>電力量料金計</td>
<td>2,377円((d))</td>
</tr>
<tr>
<td>((b)+(c))</td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td>2,938円((e))</td>
</tr>
<tr>
<td>再エネ発電賦課金等</td>
<td>334円((f))</td>
</tr>
<tr>
<td>お支払い額</td>
<td>3,272円((g))</td>
</tr>
<tr>
<td>((e)+(f))</td>
<td></td>
</tr>
<tr>
<td>消費税等相当額（再掲）</td>
<td>242円((h))</td>
</tr>
<tr>
<td>((g)×8/108)</td>
<td></td>
</tr>
<tr>
<td>消費税等相当額を除外</td>
<td>3,029円((i))</td>
</tr>
<tr>
<td>((g)-(h))</td>
<td></td>
</tr>
</tbody>
</table>

出典：東京電力エナジーパートナーHP（脚注16−19）等を参照し筆者作成

1ヶ月の電気代は3,029円/基となったため、年間の電気代支払額は約3万6354円/基となった。この単価を元に、重点整備エリア67基については設置期間の5年間、オリンピック会場については設置期間の2年間分を計算し、電気代全体は約1,458万円となった。

以上より、7つの項目を合わせるとデジサイ導入にかかる費用は11億7191万円と推計された。

表3. デジサイ導入費用

<table>
<thead>
<tr>
<th>項目</th>
<th>費用</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 設置費用（地図情報含む）</td>
<td>10億0000万円</td>
</tr>
<tr>
<td>2. 観光情報配信業務（サーバー管理・コンテンツ管理含む）</td>
<td>1億1510万円</td>
</tr>
<tr>
<td>3. 設置場所調査委託費</td>
<td>950万円</td>
</tr>
<tr>
<td>4. 利用調査委託費</td>
<td>100万円</td>
</tr>
<tr>
<td>5. 通信費（光ファイバー）</td>
<td>2873万円</td>
</tr>
<tr>
<td>6. 通信費（Wi-Fi）</td>
<td>300万円</td>
</tr>
<tr>
<td>7. 電気代</td>
<td>1458万円</td>
</tr>
<tr>
<td>費用合計（推計）</td>
<td>11億7191万円</td>
</tr>
</tbody>
</table>

出典：筆者作成

\(^{19}\) 東京電力ホールディングス賦課金等について
http://www.tepco.co.jp/renewable_energy/impost.html
第5節：デジサイ導入の便益

5.1. 地図情報の便益

地図情報の提供による便益は、デジサイの地図情報を利用することにより節約される時間を、金銭評価することにより推定する。具体的には、以下の式（1）で表される。

\[\text{利用人数（人)} \times \text{節約時間（時間/人）} \times \text{時間価値（円/時間）} \]

割引率、時間価値については、それぞれ前述した4％、1496円/時を用いる。

以下、駅前設置分67基とオリンピック会場設置分33基に分けて便益導出の手順を説明する。

5.1.1. 駅前設置分67基について

利用人数（人）

67基のデジサイが東京都内の中華街の多い駅から順に駅前に設置され、さらに利用人数が各駅における1日あたり乗降者数に比例すると仮定したうえで、現在新宿駅前と上野駅前に設置されているデジサイの利用人数について実地調査を行い、その結果から各駅における利用人数を推計した。

駅前に設置されている67基のデジサイの便益を測るため、現在実際に設置されている上野駅・新宿駅における利用数を実地調査により明らかにした。実地調査は、8時～9時・12時～13時・18時～19時の三つの時間帯で行った。また、休日・祝日と平日の利用割合は異なると考えられるため、2016年12月17日土曜日と同年同月22日木曜日に得られたデータをそれぞれの利用割合とする。本調査では、各1時間において日本人と外国人がそれぞれ何人ずつデジサイの地図機能を利用したかを観察し、記録した（図2）。

20 実地調査計画の詳細は、附録を参照されたい。
次に、この調査で得られたデータを基に、両駅における休日・祝日と平日の一日あたり利用者人数を推計する。デジサイの利用人数は周辺の通行人数により左右されるため、実地調査のデータが得られていない時間帯に関しては、各駅の時間帯別電車本数を基に利用人数の近似値を求めることとする。ここでは、新宿駅については「山手線 池袋・上野方面（外回り）の時刻表」を、上野駅は「山手線 東京・品川方面（外回り）の時刻表」を利用することとする。

表 5 上野駅デジサイ利用者

<table>
<thead>
<tr>
<th>時間帯</th>
<th>本数(土日・祝日)</th>
<th>本数(平日)</th>
<th>日本人</th>
<th>外国人</th>
<th>本数(土日・祝日)</th>
<th>本数(平日)</th>
<th>日本人</th>
<th>外国人</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>0.65</td>
<td>0.29</td>
<td>1</td>
<td></td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>3.24</td>
<td>1.47</td>
<td>5</td>
<td></td>
<td>0.23</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td></td>
<td>5.82</td>
<td>2.65</td>
<td>9</td>
<td></td>
<td>4.46</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
<td>7.12</td>
<td>3.24</td>
<td>11</td>
<td></td>
<td>4.17</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td></td>
<td>11</td>
<td>5</td>
<td>17</td>
<td></td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

出典：筆者作成
表 6 新宿駅デジサイ利用者

<table>
<thead>
<tr>
<th>時間帯</th>
<th>本数(土日・祝日)</th>
<th>日本人</th>
<th>外国人</th>
<th>本数(平日)</th>
<th>日本人</th>
<th>外国人</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0.5</td>
<td>0.14</td>
<td>1</td>
<td>0.26</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>0.57</td>
<td>3</td>
<td>0.70</td>
<td>0.16</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.86</td>
<td>10</td>
<td>1.58</td>
<td>0.53</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5.5</td>
<td>1.57</td>
<td>19</td>
<td>9.0</td>
<td>3.1</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td>22</td>
<td>9.9</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td>22</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>17</td>
<td>6</td>
<td>14</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>17</td>
<td>6</td>
<td>15</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>17</td>
<td>6</td>
<td>14</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>17</td>
<td>6</td>
<td>14</td>
<td>12-13</td>
<td>3.1</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>17</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>24</td>
<td>1</td>
<td>19</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>24</td>
<td>1</td>
<td>19</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>21.18</td>
<td>0.88</td>
<td>18</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>16.35</td>
<td>0.75</td>
<td>19</td>
<td>7.5</td>
<td>2.81</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>16.94</td>
<td>0.71</td>
<td>15</td>
<td>7.5</td>
<td>2.81</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>13.70</td>
<td>0.57</td>
<td>15</td>
<td>7.5</td>
<td>2.81</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>10.87</td>
<td>0.45</td>
<td>10</td>
<td>5.0</td>
<td>1.88</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>1.00</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

出典：筆者作成

表１、２は上野駅と新宿駅における一日あたりのデジサイ利用者数を求めたものである。電車の本数がほぼ同数である時間帯については、実地調査で求めた１時間当たりの利用者数をそのまま適用し、本数が著しく減少する早朝や夜間にかけては、その減少割合に応じて利用者数を見積もりている。これによると、上野駅の一日換算利用者は土日・祝日において日本人 259.06 人、外国人 37.65 人、平日において日本人 313.51 人、外国人 48.33 人となった。一方、新宿駅の一日換算利用者は土日・祝日において日本人 276.97 人、外国人 47.52 人、平日において日本人 101.63 人、外国人 35.24 人となった。これらより 2016 年の年間利用者数を推計し、さらに評価対象期間である 2017 年から 2021 年について、滯在外国人の増加を加味してそれぞれ年間利用人数を推計した。なお、滯在外国人数の増加については、2020 年に訪日外国人数 4000 万人という政府目標と、2016 年における訪日外国人数の実績をもとに、訪日外国人が毎年一定人数増加すると仮定し、さらに訪日外国人数推移と同じ比率で、東京都内の滞在外国人数が増加すると仮定した。また、日本人利用者数は一定と仮定する。

下表（表３）は、駅前に設置される 67 基分について、便益の評価対象期間である 2017 年から 2021 年の各年における日本人、外国人それぞれの割引後の地図機能利用による
便益と、それらの総計を示したものである。

表 7. 駅前67基地図便益算出

<table>
<thead>
<tr>
<th>駅前67基</th>
<th>日本人利用人数</th>
<th>割引前便益</th>
<th>割引後便益</th>
<th>外国人利用人数</th>
<th>割引前便益</th>
<th>割引後便益</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>25796050.6</td>
<td>2630602.66</td>
<td>476015.19</td>
<td>476014.516</td>
<td>4954575.097</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2456406.37</td>
<td>25659560.54</td>
<td>521603.25</td>
<td>5444085.104</td>
<td>5444085.104</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>2428983.23</td>
<td>247063.54</td>
<td>588383.08</td>
<td>5136737.951</td>
<td>5902632.646</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2464766.66</td>
<td>23775604.93</td>
<td>654942.32</td>
<td>6833166.017</td>
<td>6317648.096</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>2496593.59</td>
<td>23156171.33</td>
<td>729477.69</td>
<td>761080.932</td>
<td>8765983.205</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>2464766.66</td>
<td>25716904.3</td>
<td>788000.11</td>
<td>9231386.08</td>
<td>702777.756</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119261677.6</td>
<td></td>
<td></td>
<td></td>
<td>3145634.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>159735692.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典：筆者作成

5.1.1 オリンピック会場設置分33基について

オリンピック会場設置分の33基について、駅前設置分と同様に利用人数から便益を求める。オリンピック会場設置分については、東京都内の会場33か所にそれぞれ1基ずつ導入されると仮定し、さらに、その利用人数は、オリンピック期間中は各会場の収容人数に比例し、それ以外の期間は各会場の乗降者数に比例すると仮定する。なお、これらの33基については、導入が2020年のため便益計算は2年分のみ行う。

下表（表8）は、オリンピック会場設置分33基について、便益の評価対象期間である2017年から2021年の各年における日本人、外国人それぞれの割引後の地図機能利用による便益と、それらの総計を示したものである。

表8. オリンピック会場33基の地図便益

<table>
<thead>
<tr>
<th>日本人利用人数</th>
<th>割引前便益</th>
<th>割引後便益</th>
<th>外国人利用人数</th>
<th>割引前便益</th>
<th>割引後便益</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581117.719</td>
<td>2939022.357</td>
<td>2006722.493</td>
<td>47664.36418</td>
<td>497293.4332</td>
<td>5117105.107</td>
</tr>
<tr>
<td>256726.052</td>
<td>2678452.083</td>
<td>54463.63</td>
<td>568281.8992</td>
<td>568283.6992</td>
<td></td>
</tr>
<tr>
<td>257100.467</td>
<td>2579220.351</td>
<td>61418.5072</td>
<td>640794.452</td>
<td>618148.5116</td>
<td></td>
</tr>
<tr>
<td>257287.674</td>
<td>2451825.394</td>
<td>66366.3923</td>
<td>713392.5640</td>
<td>850469.6455</td>
<td></td>
</tr>
<tr>
<td>256492.135</td>
<td>2387542.067</td>
<td>75527.7846</td>
<td>767998</td>
<td>705259.2416</td>
<td></td>
</tr>
<tr>
<td>257287.674</td>
<td>2204587.088</td>
<td>82295.6852</td>
<td>868192.7589</td>
<td>733586.7653</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4662128.155</td>
<td></td>
<td></td>
<td>1434115.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6126244.162</td>
<td></td>
</tr>
</tbody>
</table>

出典：筆者作成

オリンピック会場設置分33基については、便益が計613万円と推計され、駅前67基分と合計すると、計1.58億円の便益となった。さらに、オリンピック期間中、会場で
は通常時よりも利用割合が上がる可能性を考え、5倍、10倍、15倍で感度分析を行った。これについては、後述の感度分析の項で述べる。
5.2. 観光情報の便益

東京都が設置するデジサイの機能の一つである観光情報を提供することによる便益であるが、ここではその便益は小さいと判断し、考慮しないこととする。

写真1は、上野駅に設置されているデジサイの全体写真である。ディスプレイは1台に2枚設置されており、右の画面は常に地図を表示し、左の画面は一定時間利用されないと動画を流す機能になっている。左の画面はタッチすると即座に右の画面と同様の地図を映し出す仕様になっている。

現行のデジサイは、ロボットやお茶など日本のイメージ動画を流すだけであるため、この動画を見ただけで人々がどの観光地を訪問するかについての選好を変える可能性は極めて低いと考えられる。そのため、イメージ動画がもつ観光情報としての便益はゼロである。もっとも、将来的に各観光地の魅力をアピールする動画が流されるようになれば便益が発生する可能性は存在する。

写真2は、同じく上野駅のデジサイの画面である。画面の「観光」ボタンをタッチすると、周辺に存在するいくつかの観光地が表示される。さらに各所のボタンをそれぞれタッチすると、現在地からその観光地までの経路が画面に表示されるとともに、その観光地の説明が現れる。説明は5行ほどの簡素なもので、他には電話番号と住所が表示されるだけである。ここでの観光情報もまた、人々の選好を変化させるほどの影響はないと判断して、便益はゼロと考える。

写真1（左）：上野駅のデジサイ全体写真。写真2（右）：デジサイ画面
5.3. 災害情報の便益

5.3.1. 災害情報の便益に関する背景と仮定

近年、駅周辺や公共スペースなどの地域にデジタルの普及により、新たな情報メディアとして、デジサイの需要がますます拡大になると見込まれている。しかしながら東日本大震災では、情報伝達手段としては十分機能せず、震災後の節電要請時には多くの表示機器が停止を余儀なくされた。公衆通信インフラの被害についても、固定通信で190万回線が被害し、およそ2万9千局の無線基地局が停止した22。震災後、国は災害時の情報伝達手段の多様化を軸とする整備を推進し、デジサイも重要な媒体の1つとしてあげている。

大地震が発生した後、駅周辺の67基のデジサイに一時間ほど災害情報を伝達すると仮定した場合、どれだけの便益をもたらすのかを分析する。一時間というのは、東京都からのヒアリングにより得た、停電した場合のデジサイの最大運行時間を、大地震による災害が発生した後は携帯電話などの移動通信機器の使用はできなくなったり、身の回りにあるデジサイからしか避難情報や災害情報を得ることができないと仮定する。

5.3.2. 公式と分析手法

デジサイの災害情報便益は使用した公式は以下となる

$$ f(t; \mu, \alpha) = \frac{\mu}{2 \pi \alpha t^3} \exp\left\{ -\frac{(t-\mu)^2}{2\mu \alpha t} \right\} $$ (3)

$$ f(t; \mu, \alpha) = \frac{\mu}{2 \pi \alpha t^3} \exp\left\{ -\frac{(t-\mu)^2}{2\mu \alpha t} \right\} $$ (3)

まず、大地震の発生率に関しては、梅田23の「地震の発生確率 (I)」から引用した公式を用いて推計した。用いた公式は以下である。

$$ f(t; \mu, \alpha) = \frac{\mu}{2 \pi \alpha t^3} \exp\left\{ -\frac{(t-\mu)^2}{2\mu \alpha t} \right\} $$ (3)

tは経過年数、\(\mu \)は地震発生間隔の平均値、\(\alpha \)はばらつき具合であるが、ここで、\(\alpha \)については地震調査委員会が決めた\(\alpha = 0.24 \)を採用する。従って、地震発生確率は地震の発生間隔のばらつき具合に依存するため、\(\mu \)（地震発生間隔の平均値）を知る必要がある。これは、気象庁ホームページの、気象庁での各種データ・資料＞震度データベースに記載されている。

22 吉村茂浩「東日本大震災における災害情報伝達手段の課題と対策」2013年

23 梅田康弘「地震の発生確率 (I)」産業総合研究所 2012年9月30日

ーク検索24において、1923年から2016年にかけて93年間で同じ震度を起きる回数を数え、年数で割ることにより求めた。それぞれの震度のμ値を上の公式に代入した結果を以下の図に示す。表9の大地震発生率は四角で囲んだ部分の計算結果を用いており、震度6弱は0.13535、震度6強は0.051893、震度7は0.000016とした。大地震震度として、震度6弱、6強、震度7を想定し、それぞれについて計算した。

表9 災害便益計算

<table>
<thead>
<tr>
<th>西暦年</th>
<th>経過年数</th>
<th>確率密度BPT(6弱, μ =)</th>
<th>確率密度BPT(6強, μ =)</th>
<th>確率密度BPT(7, μ =)</th>
<th>bの面積6弱</th>
<th>bの面積6強</th>
<th>bの面積7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1991</td>
<td>2</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1992</td>
<td>3</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1993</td>
<td>4</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1994</td>
<td>5</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1995</td>
<td>6</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1996</td>
<td>7</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1998</td>
<td>9</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1999</td>
<td>10</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2000</td>
<td>11</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2001</td>
<td>12</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2002</td>
<td>13</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2003</td>
<td>14</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2005</td>
<td>16</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2006</td>
<td>17</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2007</td>
<td>18</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2008</td>
<td>19</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2009</td>
<td>20</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2010</td>
<td>21</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2011</td>
<td>22</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2012</td>
<td>23</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2013</td>
<td>24</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2014</td>
<td>25</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2015</td>
<td>26</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2016</td>
<td>27</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2017</td>
<td>28</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2018</td>
<td>29</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2019</td>
<td>30</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2020</td>
<td>31</td>
<td>0.00000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

出典：筆者作成

次に、停電率についてである。大地震が発生することによって、電柱の被害が受けるため、停電による基地局の機能が失う可能性を考えている。電柱被害率が大きいところでは停電率が大きくなる。ここでは、震度ごとで配電ツリーモデルにより求められた物

24 気象庁ホームページ 「地震データベース検索」
的被害と供給支障率との関係式を用い停電率を計算した。25

\[y = 19.5 \times X^{0.35} \] (4)

\(y \): 停電率（%） \(X \): 電柱の被害率（%）

電柱の被害率に関しては、東京における直下地震の被害想定に関する調査報告書により、震度7の時は6.68%、震度6強と6弱の時は0.55%である。従って、震度7の時停電率は\(y = 19.5 \times 6.68\%^{0.35} = 7.56\% \)、震度6強と6弱の場合は\(y = 19.5 \times 0.55\%^{0.35} = 3.16\% \)となる。

一人当たりの生命価値の算出は、総務省の「規制の事前評価マニュアル」26に書かれた一人当たりの生命価値2億2600万円を引用した。総務省の「規制の事前評価マニュアル」に載っている生命価値は交通事故被害による人間の生命価値である。我々が分析するのは、災害時にデジサイが設置する場所を通る人々の生命価値であるため、この2億2600万円という数字が最適であるかは疑問が残るところであるが、現時点では一番近い数値として引用することとした。

死者減少率とは、デジサイがある時とない時を比べて、どれだけ死亡率が減少するのかを示したものである。デジサイに関する災害情報の有無による期待値の差に関連する先行文献が発見できなかったため、代替的な手法として避難情報が発令された時に避難行動をとる比率を用いる。具体的には避難に関する特別世論調査のデータを用いた27。その「避難行動に関する世論調査」によると、避難しない人（1.5%）と避難勧告等の発令に関わらず自分で判断する人（20%）を除いて、避難情報に従い行動をとる人は78.5%となり、これを死亡被害の減少率として代替する。

人々が災害時にデジサイの情報を利用する可能性のある領域として、デジサイ周辺の一定範囲を想定している。ここでは、次の（6.4）においてWi-Fiサービスが提供される範囲と同じ75m以内を想定する。しかし、この範囲に関しては、どれくらいの領域の人がデジサイから発せられる災害情報を利用するか不確実であるため、感度分析として、5m²（利用人数141人）、10m²（利用人数283人）、15m²（利用人数424人）、50m²（1413人）、75m²（利用人数2120人）、100m²（2827人）で分けて分析を行う。震度による死者

25神奈川県「神奈川県地震被害想定調査報告書」1993
26総務省「規制の事前評価マニュアル（案）―定量分析の充実のために―」
27内閣府政府広報室「避難に関する特別世論調査」2010年2月25日
率に関しては、単純線形回帰モデル（中村 2003）による。これに基づき、以下の式により計算した。

\[
Z = 0.057Y - 0.228
\]

\[
Y = 41.4x - 231.2
\]

（\(Z\)：死者率、\(x\)：震度、\(Y\)：低層建物全壊率）

5.3.3. 計算結果

計算結果を表 10 で示す。なお、ここでは駅周辺の 67 基のみを計算対象としている。
また、本分析では対象駅の乗降者数のデータを用いているが、地図便益において考慮されているオリンピック時期における利用人数の増減は、ここでは考慮されていない。

表 10. 災害便益算出

<table>
<thead>
<tr>
<th>震度</th>
<th>発生率</th>
<th>停車率</th>
<th>生命確保・支援人数</th>
<th>駅利用人数</th>
<th>利用人数</th>
<th>災害減少率</th>
<th>死者率</th>
<th>便益</th>
<th>合計</th>
<th>場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>6箱</td>
<td>0.14</td>
<td>0.0316</td>
<td>22800000000</td>
<td>9303899</td>
<td>275649.5</td>
<td>2.927</td>
<td>0.765</td>
<td>0.16245</td>
<td>3604447.8</td>
<td>途中</td>
</tr>
<tr>
<td>6箱</td>
<td>0.252</td>
<td>0.0316</td>
<td>22800000000</td>
<td>9303899</td>
<td>275649.5</td>
<td>2.927</td>
<td>0.765</td>
<td>1.34235</td>
<td>11082873.6</td>
<td>途中</td>
</tr>
<tr>
<td>7</td>
<td>0.000016</td>
<td>0.0760</td>
<td>22800000000</td>
<td>9303899</td>
<td>275649.5</td>
<td>2.927</td>
<td>0.765</td>
<td>3.11220</td>
<td>1886.0</td>
<td>途中</td>
</tr>
</tbody>
</table>

出典：筆者作成

中村久美子「住宅更新による地震時死者数の低減効果」，2003，長岡工業高等専門学校卒業研究
5.4. Wi-Fi 便益

5.4.1. 概要

当該デジサイには無料 Wi-Fi 機能が付いているため、これも便益に計上する。提供される Wi-Fi は“Free Wi-Fi Tokyo”という名称で、東京都が運営している。デジサイ以外にも、都立中央図書館、東京都写真美術館、バスタ新宿等で使用することができる。この Wi-Fi は無料で使用することができるため、この Wi-Fi 使用における便益（以下、Wi-Fi 便益）の推測方法は、Wi-Fi 利用者（以下、ユーザー）が有料で Wi-Fi を使用した時にかかる費用として計上する。以下の節から Wi-Fi 便益のモデルについて説明する。

5.4.2. モデル

Wi-Fi 便益のモデルは以下である。
利用可能人数(人)× 利用率× 利用時間(分/人)× 価格(円/分)× 日数× 割引率× 基数（7）

各項について説明していく。第 1 項の利用可能人数は、Wi-Fi がつながる範囲内の人口である。総務省の Wi-Fi 利用マニュアル29によれば、Wi-Fi の電波が届く範囲はアクセスポイント、設置条件によって異なるが周囲の見通しが良ければ半径 50〜100m 程度の範囲で利用できるとしている。したがって、この平均の値である半径 75m の範囲内にいる人が Wi-Fi 利用可能人口であるとする。

次に、範囲内人口のデータについて説明する。東京都によると Wi-Fi を設置するのは、新宿・大久保、銀座、浅草、渋谷、渋谷駅周辺・丸の内・日本橋、秋葉原、上野、原宿・表参道・青山、お台場、六本木・赤坂、そして 2020 年大会会場周辺（東京都, 2014）としている。したがって、設置場所は大会会場周辺エリアとそれ以外のエリアに分けることができる。大会会場周辺以外のエリアに関しては出店戦略情報局30に掲載されている各駅の「500m 圏内」の「昼間人口」というデータを利用した。本サイトによるとそれぞれのデータは「昼間人口 2005 年国勢調査 2006 年事業所統計リンクデータ」を利用して各駅で掲載されているため、信用度は高いものと判断し利用する。また、当該範囲内

29 総務省情報流通行政局 情報流通振興課 情報セキュリティ対策室 「Wi-Fi 提供者向けセキュリティ対策の手引き」2016 年 8 月

30 全国駅データベース「出店戦略情報局」http://storestrategy.jp/> (2016 年 1 月 7 日アクセス)。

24
における五輪期間中はその半径75m圏内の人口が1.1倍に増加するという仮定のもと推計している。一方で、大会会場周辺エリアに関しては駅前に設置されるわけではないため、五輪期間中は範囲内人口を会場の収容人数とし、五輪期間外は同様に最寄り駅の半径75m圏内昼間人口を推計し利用した。推計結果が以下の4パターンである。

<table>
<thead>
<tr>
<th>表11. Wi-Fi便益範囲利用人数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>駅前</td>
</tr>
<tr>
<td>五輪会場</td>
</tr>
</tbody>
</table>

出典：筆者作成

第2項の利用率と第3項の利用時間は、計測や前例研究がなかった。従って、第2項の利用率については感度分析することにした。0.15%、0.1%、0.05%の3パターンで、0.1%をベースケースとする。第3項の利用時間は、一回あたりの利用を5分間という仮定を置くと、総務省のデータをもとに、有料のインターネット契約をしている人の一日の平均的な利用時間を1時間として、一回の利用当たり一日の料金の12分の1の便益を得ていると考える。

第4項は価格である。ユーザーが無料のWi-Fiを利用する便益は有料のWi-Fiを利用した場合に支払う価格であると仮定し、東京のモバイルWi-Fiルーター価格の平均を算出した。価格を比較するサイトである価格.comの2016年12月6日時点の情報を利用した。サービスはプロバイダと回線とWi-Fiデバイスの組み合わせで複数存在しており、簡素化のためのプロバイダと回線の組み合わせが等しく、Wi-Fiルーターが異なる場合は一つのサービスとして換算した。結果として11サービスの平均は月額3547円、1日あたり118.2円となった。

第5項と第6項は日数と割引率である。まず、日数は大会会場周辺のデジサイは2020年から2年間設置し、駅周辺のデジサイは5年間設置すると仮定している。また、この2分類を五輪期間と五輪期間外で分類して計上した。日数の分類は表12に示す。

31 日経新聞 「五輪で東京に1000万人 過密都市ゆえの課題多く」2013年9月10日 http://www.nikkei.com/article/DGXNZ059486280Q3A910C1EA2000/

32 総務省（2015）「平成26年情報通信メディアの利用時間と情報行動に関する調査」

33価格.comプロバイダ「プロバイダ料金比較」<http://kakaku.com/>（2016年12月6日アクセス）
以上の日数で分類した9つの式にそれぞれ割引率4%を乗じた。最後に、第7項の基数である。基数はデジサイを設置する基数のことで、すでに述べられているように大会会場周辺に33基、駅周辺に67基設置すると仮定する。

5.4.3. 感度分析

利用率に関する感度分析の結果は以下に示した通りで、0.15%であれば6.27億円、0.1%であれば4.18億円、0.05%であれば2.09億円であった。したがって、0.01%変化すると0.418億円増えるという推計になった。

<table>
<thead>
<tr>
<th>利用率</th>
<th>0.15%</th>
<th>0.1%</th>
<th>0.05%</th>
</tr>
</thead>
<tbody>
<tr>
<td>便益（億円）</td>
<td>6.27</td>
<td>4.18</td>
<td>2.09</td>
</tr>
</tbody>
</table>

出典：筆者作成
第6節：デジサイ導入の純便益

6.1. 純便益（ベースケース）の結果

以上の費用と3つの便益から純便益とCBRを算出した。結果として、純便益はマイナス9000万円、CBRは0.92であった。以下の表にあるように、便益の大きい順に災害便益の4.9億、Wi-Fi便益の4.2億、地図便益の1.7億であった。

<table>
<thead>
<tr>
<th></th>
<th>合計(円)</th>
<th>合計(億円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>費用計</td>
<td>1,171,836,003</td>
<td>11.7</td>
</tr>
<tr>
<td>地図便益</td>
<td>172,965,929</td>
<td>1.7</td>
</tr>
<tr>
<td>災害便益</td>
<td>491,411,815</td>
<td>4.9</td>
</tr>
<tr>
<td>Wi-Fi便益</td>
<td>417,757,337</td>
<td>4.2</td>
</tr>
<tr>
<td>便益計</td>
<td>1,082,135,081</td>
<td>10.8</td>
</tr>
<tr>
<td>純便益</td>
<td>-89,776,053</td>
<td>-0.9</td>
</tr>
<tr>
<td>CBR</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

出典：筆者作成

以上の純便益の結果から5つの指摘ができる。第1に、CBRが0.92で純便益がマイナス9000万円となったことから、私たちの調査は東京都によるデジサイ事業の実施を支持できない結果となった。第2に、デジサイの主要機能である地図便益が想定よりも小さかった。もし、提供する機能が地図情報のみで、災害情報を流さず、無料Wi-Fiも提供しないのであれば、純便益はマイナス10億円でCBRは0.15となり、更に実施を支持できない結果となる。第3に、想定よりも災害便益が大きく（3機能の中で最大）、次に大きいのがWi-Fi便益であった。第4に、それぞれの項目に利用割合の項目が入っており、全ての便益がこれに依存している。この利用割合が高まれば便益が上昇し、低下すれば便益も減少する。

6.2. 純便益の感度分析

3つの便益（地図、災害、Wi-Fi）をそれぞれ感度分析した。まず、地図便益は五輪期間中の会場デジサイの利用率の増加率を5倍、10倍、15倍で分析した。次に、災害便益は災害情報を発せられた時に利用が想定される範囲を10、50、100㎡で分析した。そして、Wi-Fi便益はWi-Fiを利用する割合を0.05%、0.10%、0.15%で分析した。
以上の枠組みで分析した結果が以下である。なお、表 16 で示しているのは 27 通りではなく、1 つの変数以外はベースケースで固定した 9 通りである。地図便益は 1.65 億円から 1.81 億円の範囲、災害便益は 0.98 億円から 9.83 億円、Wi-Fi 便益は 2.09 億円から 6.27 億円の範囲で変化した。全ての感度分析を低いものに設定したローケースでは便益の合計が 4.7 億円となるため、純便益はマイナス 7.0 億円で CBR は 0.4 となり、ハイケースでは合計便益が 17.90 億円、純便益がプラス 6.2 億円で、CBR は 1.53 となった。私たちの想定する前提条件がハイケースであれば、CBR が 1 を超える結果となった。

表 15. 感度分析の枠組み

<table>
<thead>
<tr>
<th>便益</th>
<th>地図（倍）</th>
<th>災害（利用人数）</th>
<th>Wi-Fi（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>283（10 ㎡）</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>ベースケース</td>
<td>5</td>
<td>283（10 ㎡）</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>1413（50 ㎡）</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2827（100 ㎡）</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

出典：筆者作成

表 16. 感度分析の結果

<table>
<thead>
<tr>
<th></th>
<th>地図</th>
<th>災害</th>
<th>Wi-Fi</th>
<th>純便益</th>
</tr>
</thead>
<tbody>
<tr>
<td>ローケース</td>
<td>1.65</td>
<td>0.98</td>
<td>2.09</td>
<td>-26.1</td>
</tr>
<tr>
<td>ベースケース</td>
<td>1.73</td>
<td>4.91</td>
<td>4.18</td>
<td>-20.0</td>
</tr>
<tr>
<td>ハイケース</td>
<td>1.81</td>
<td>9.83</td>
<td>6.27</td>
<td>-12.9</td>
</tr>
</tbody>
</table>

出典：筆者作成

デジサイの主機能は地図便益であるので、災害便益と Wi-Fi 便益をローケースとした場合に、地図便益の利用者がどれだけ増えるかを推定してみると、5.5 倍の利用者が必要であることがわかる。人数にしてみると、1 日平均一基あたり約 500 人の利用者を約 2750 人にまで増やす必要がある。

表 17. CBR 1 に必要な地図便益利用者の計算

<table>
<thead>
<tr>
<th>倍率（倍）</th>
<th>地図便益（億）</th>
<th>純便益（億）</th>
<th>CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>4.8</td>
<td>-3.8</td>
<td>0.67</td>
</tr>
<tr>
<td>5.0</td>
<td>8.0</td>
<td>-0.64</td>
<td>0.94</td>
</tr>
<tr>
<td>5.5</td>
<td>8.8</td>
<td>0.15</td>
<td>1.01</td>
</tr>
</tbody>
</table>

出典：筆者作成
第7節：考察

7.1. 実地調査を行う上での留意点

今回の調査では、上野駅と新宿駅の2地点で利用人数を計測した。時間帯は朝、昼、夜の3時間帯を平日と土曜日で行った。この実地調査から考えられる留意点を2点あげる。

一点目は、利用人数の計測方法である。本研究において想定した機能を、デジサイを眺め、タッチしたユーザーが必ずしも利用していない可能性があり、これらについては、これらの具体的なユーザーの動向はユーザーにインタビューをすることなどにより正確に把握できるが、今回の調査では実施しなかった。

二点目は、時間帯の問題である。時間帯によって駅の条件などが変化するため、その他の時間帯でも調査が必要である。例えば、都庁前の設置場所では夜18:00になると手前の駅への出口が閉鎖されてしまう。このため前後では通行人の量が著しく変化すると考えられる。今回は電車の本数により調査時間外の時間における利用者数を推定したが、他の時間においても調査を実施することにより精度は増すと考えられる。

7.2. 政策的含意

本研究では、デジサイの現在の機能を踏まえ、地図情報、観光情報、災害情報、Wi-Fiサービスから得られる便益に焦点を絞ったが、全国の各自治体が運営しているデジサイの例を見ると地域企業等の広告情報を提供し、広告収入を得て運営しているケースが見られた。将来的に東京都でも広告情報を提供する場合は、広告収入による便益の増加が見込めるが、現状は公道上の広告に対して屋外広告規制（各特別区が所管）があり、デジタルサイネージのような媒体は条例の対象として含まれていないため、広告情報を配信するハードルは高くなっている。仮に広告収入を便益に含める場合は、同時に、条例改正コストを費用に推計する必要があり、単純に便益の増加とはならない可能性もある。

7.3. 今後の課題

地図便益の節約時間については、本グループメンバーによる実地調査で算出したが、より有意な結果を得るため、より多くのサンプルが必要であることに加え、年齢層に応じてデジサイの代替となりうるタブレット端末等の利用状況が異なるため、複数世代による調査が必要となる可能性が考えられる。

また、災害情報便益に関する課題としては、以下の3つが考えられる。

34平成26年3月宮崎県宮崎市一般財団法人地方自治研究機構「デジタルサイネージを活用した公共情報システムに関する調査研究」
1つ目は、災害情報の便益のモデルの恣意性である。今回は、特に死者減少率に関して、総務省の「避難に関する特別世論調査」の結果のもとに計算したが、これは死亡減少率そのものを表すものではないので、より正確な推計を求められる。

2つ目に、大地震の発生率に関してだが、μ値（同規模の地震発生平均間隔年数）は先行文献に書いてているように、現在のところは正確に統計しにくく、バイアスが存在することがわかっている。今後はデータの更新と使用などに注意する必要がある。

3つ目は、今回のデジサイの災害情報便益は駅周辺の67基についてのみ計算し、残りオリンピック会場の33基は計算していないことである。したがって、このことに関しては、便益を過少に推計している可能性があるが、オリンピック会場に設置されるデジサイに関しては、災害情報による便益は副次的なものであり小さいと考えられるため、純便益への影響は限定的であると考えられる。

Wi-Fi便益に関しては、1人当たり1回5分という仮定を置いたが、これも調査等により実際の平均的な利用時間を求めたうえで推計する必要があると考えられる。
謝辞

本稿の執筆に当たり、テーマ選定から完成に至るまで指導教官の岩本康志教授には数多くのご助言とご指導をいただき。また、デジタルサイネージに関係する方々にも、分析に必要な情報を快く提供していただいた。デジタルサイネージという先例のないテーマでの分析は、これらの方々のご協力なしでは完成に至らなかったと思われ、改めて厚く御礼申し上げたい。

なお、本分析で示した推定結果や提言はすべて筆者たちの個人の見解であり、所属する組織やご指導いただいた教授の見解を示すものではない。また、本稿にあり得る誤りはすべて筆者たちに帰するものである。
参考文献
梅田康弘「地震の発生確率（1）」産業総合研究所 2012年9月30日
神奈川県「神奈川県地震被害想定調査報告書」1993年
気象庁ホームページ「地震データベース検索」
総務省「規制の事前評価マニュアル（案）—定量分析の充実のために—」
総務省情報流通行政局 情報流通振興課 情報セキュリティ対策室、「Wi-Fi提供者向けセキュリティ対策の手引き」2016年8月
http://www.soumu.go.jp/main_sosiki/joho_tsusin/security/cmn/Wi-Fi/Wi-Fi_manual_for_AP.pdf（参照2016年1月20日）.
東京都（2012）『首都直下地震等による東京の被害想定—概要版—』2012年4月18日公表
http://www.bousai.metro.tokyo.jp/_res/projects/default_project/_page_/001/000/401/assumption_h24outline.pdf（参照2016年1月20日）。
東京都 『外国人旅行者の受入環境整備方針 〜世界一のおもてなし都市・東京の実現に向けて〜』2014年
http://www.metro.tokyo.jp/INET/KEIKAKU/2014/12/DATA/70oep301.pdf（参照2016年1月20日）。
内閣府庁広報室「避難に関する特別世論調査」2010年2月25日,
中村久美子「住宅更新による地震時死者数の低減効果」2003年、長岡工業高等専門学校卒業研究
吉村茂浩「東日本大震災における災害情報伝達手段の課題と対策」2013年、
http://www.isad.or.jp/isad_img/kikan/No113/6p.pdf
利用人数 実地調査計画書

1. 実地調査の目的
デジタルサイネージ（以下「デジサイ」と言う。）を利用した人数を調査し、地図情報配信機能の利用人数として便益の推計に利用する。デジサイの２つのディスプレイのうち一つは必ず地図を表持しており主な機能は地図情報と言え、主体的にデジサイに近づく人は地図情報を求めるている利用者と考える。

2. 実施日
2016年12月17日（土）及び2016年12月22日（木）（平日1回・休日1回）

3. 調査場所
2016年12月時点で設置されているデジサイ4基のうち、駅前に設置されている①・④の場所で利用者数を観察する。

4. 観察時間帯
1時間×3回（朝8－9時、昼12－13時、夜18－19時）

5. 調査内容
・1時間当たりの利用人数を日本人と外国人に分けてカウントする。

6. カウント基準
・興味本位で接触していると判断される人は含めない。（地図機能等、今回想定したデジサイの機能を利用しないため）
・一見して外国人かどうかの判断が付かない場合は接近して使用言語（日本語か否か）により判断する。
節約時間 実地調査計画書

1. 目的
デジタルサイネージ（以下「デジサイ」という。）の地図機能を利用した場合と利用しない場合の目的地への到達時間を計測し、その差を節約時間（分）とする。

2. 調査場所
UENO3153ビル前のデジサイ（調査員になじみのない上野駅を選択。）

3. 調査方法
デジサイが利用される形態を想定し、以下の①～③の区分でそれぞれ目的地を設定することとし、調査員以外の者が具体的な目的地を指定する。調査員一人につきデジサイを利用場合と利用しない場合の両方を経験するよう組み合わせる。

①観光地
②一番近くの不特定多数の場所（ＡＴＭ・コインロッカー・トイレ・バス停）
③特定の場所（お店の名前と住所がわかっている状態）

<table>
<thead>
<tr>
<th>組</th>
<th>目的地名</th>
<th>住所</th>
<th>利用</th>
<th>利用なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>横山大観記念館</td>
<td>東京都台東区上野3丁目29番5号</td>
<td>A（男性）</td>
<td>B（女性）</td>
</tr>
<tr>
<td>2</td>
<td>六龍鉱泉</td>
<td>東京都台東区上野5丁目15-1</td>
<td>C（男性）</td>
<td>D（男性）</td>
</tr>
</tbody>
</table>

4. 計測方法等留意点
・デジサイ前をスタート地点とする。
・スタートと同時にストップウォッチで時間を測り、デジサイを利用する場合はデジサイで調べている時間も含める。
・実際に利用形態を勘案しデジサイの利用有無にかかわらず携帯電話による検索は可能とする。
・②の目的地について、一番近くない場所に到着した場合でも目的が達成できる場所であれば到達したものとする。
・①と③については、正確な場所に到着していることを確認する。
・目的地に指定された場所を事前に調査しない。