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A Negotiation Game Analysis of Airport and Airline
Risk Sharing Contract

Katsuya Hihara∗and Naoki Makimoto†

120605/1610

Abstract

We analyze a linear risk sharing contract between airport and airline, called“Load
Factor Guarantee Mechanism,”with the framework of generalized Nash bargaining
solution for contracting phase and Cournot-type best response functions for effort-
making game during the contract period. The slope of the linear contract, which
contains the functions of risk sharing and incentive payment, is to be agreed upon so
as to maximize the total welfare of both parties without any influence of negotiation
power balance. The target load factor of the linear contract, which is a common target
for efforts and a threshold for the payment, will be agreed upon in an equitable sharing
manner based on the contract’s contribution to welfare gain and the bargaining power
of each party in addition to the slope agreed upon as above1.

key words
Airport-Airline Vertical Relationship, Risk Sharing, Incentive Design, Nash

Bargaining Solution, Load Factor Guarantee Mechanism

JEL Classification Numbers:
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1 Introduction

Airport and airline are both essential part of aviation and air traffic system to serve
air travel passengers and cargo shippers. They could improve their service by jointly
forming contractual relationship with good incentive design and risk sharing, and gain
more revenues and profits.

In fact, under the recent volatile business environments, risk sharing mechanisms
between airports and airlines were contracted to stabilize revenue fluctuation, to give
incentives of enhancing efforts and improving service quality and to better serve the
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users of the routes at the airports2. Noto Airport Load Factor Guarantee Mechanism
(LFGM) is one example of such contracts. Its payment structure is a simple linear
function based on the realized state, not the effort. We can call such contract, a linear
contract.

In this paper, we analyze such linear contracts from two objectives. How such
contract is negotiated? What are the contents (slope and a reference point) of the
negotiated linear contracts? We analyze a linear risk sharing contract between airports
and airlines in two stages. For the first stage, we used the framework of generalized
Nash bargaining game during a contract-negotiation process. For the second stage,
we use the framework of Cournot-type best response function to effort-making game
during the contract period.

Here is the map of this paper. First in section 2 we state the background and
explain relevant literatures. In section 3 we explain our model in detail. In 4, we
derive the equilibrium effort levels given the linear payoff contract. In section 5, based
on the equilibrium effort levels, we show the contents of linear payoff contract both
parties would agree upon by the Nash bargaining solution. In section 6, we explain
the characteristics of the derived linear payoff contract and its implications to the real
world business problem by using numerical examples. In the last section, 7, we state
concluding remarks.

2 Literature Review

Because of the importance of airport and airline relationships in the air transport
system, we have numerous studies from transport economics. For example, the recent
study from the stand point of consumer welfare analyses is Barbot et al.(2011) and Oum
and Fu (2009). They also studies from the view-points of market competition among
many airport-airline vertical relationships and its effects on networking and pricing.
Zhang et al. (2010) is a unique research about contractual revenue sharing between
airport and airline, and its impacts on pricing and routes.

Also in the contract theory literatures, a lot of researchers studied the optimality
of various contracts. Kim and Wang (1998) is a general analysis about the optimal
contracts under double moral hazard settings. Linear contracts are very prevalent in
the real world like the Noto LFGM contract, although it is piece-wise linear contract to
be precise. Under moral hazard settings, analysis about optimality of linear contract
include Holmstrom and Milgrom (1987) and Schattler and Sung (1993). Battachaiya
(1995) is on optimality of linear contract for risk neutral agent and principal. The risk
sharing research goes back to the pioneering work of Borch (1962).

Fukuyama et al. (2009) analyzed on another example of LFGM at Tottori Yonago

2Although the structures are not exactly the same with Noto case, we can find similar vertical contractual
cases around the world. In US, for example, DOT granted money to local communities with airports to
entice airlines‘ operation into the region from 2002 by giving revenue guarantee or subsidy. In Europe, one
example is that Charleroi airport, a secondary airport owned partially by Walloon regional government, made
contract with Ryan Air to financially support the LCC ’s opening at the airport and to discount airport
chargers among other things. As we describe later, with proper modification, we believe the structure and
analyses on Noto case can be a foundation for other similar cases across the world, since the Noto case has
wider scope and range of vertical relationship (coverage of upside as well as downside, direct risk sharing
rather than simple subsidies or financial guarantees, for example)

2



airport at west side of Japan. They look into the parameter of linear contract with
Nash bargaining solution. They do not analyze the function of risk sharing or incentive
structure of the LFGM contract.

Hihara (2011) looked into the load factor guarantee mechanism as one of the exam-
ples of such risk sharing contracts with a double moral hazard model and showed linear
payoff contracts can be the optimal contract. Also Hihara (2012) analyzed such mech-
anisms with incomplete contract framework and illustrated the effects of such contract
on the parties ’effort/utility improvements.

Despite the vast amount of literature about airport and airline vertical relationship,
such as Oum and Fu (2009), Zhang et al. (2010) and Barbot et al. (2011), however,
negotiation process of such contracts between airports and airlines and the contents of
such agreed contracts are, to our knowledge, neither modeled nor analyzed from the
standpoints of risk sharing or incentive mechanism. Especially the linear contracts in
which the payoff is a linear function of realized states are prevalent in real business
environment. So the need to analyze such linear contracts is substantial.

Our analysis is not from the moral hazard standpoints. We focus more on the nego-
tiation process and its results rather than the information asymmetry structure. Our
model will deal with Nash bargaining settings with symmetric information structure.
Also we will deal with the situation where both parties of a contract are risk averse. In
double moral hazard settings like in Kim and Wang (1998), in most cases only one of
the parties is risk averse and the other is risk neutral. Also our model looks into the
detail of the risk sharing function and incentive structure of linear contract.

3 Settings

In this section, we set up a model to analyze the negotiation process and the efforts
to be made by both parties during the contract period. Model consists of two stages.
The first stage is a negotiation game on the contents of a linear contract of LFGM.
The second stage is an effort making game of each party, which is a Cournot-type
non-cooperative game, during the contract period after they signed the contract.

3.1 Model

Airport and airline can make effort to improve the load factor of the air transport
route at the airport. Effort level ep is that of airport and e` is that of airline. Herein
after, the suffix p indicates airport and ` indicates airline. Definition range of ep and
e` is IR+ = [0,∞). By making efforts ep and e`, both incur necessary costs, which are
indicated by functions cp(ep) and c`(e`). We assume that both cp(ep) and c`(e`) satisfy
conditions of cp(0) = c`(0) = 0 and

c′k(ek) > 0, k ∈ {p, `} (1)
c′′k(ek) > 0, k ∈ {p, `} (2)
lim

ek→∞
ck(ek) = ∞, k ∈ {p, `} (3)

Random variable M , which indicate a load factor of the route, is assumed to be
given by M = µ(ep, e`) + L. Here µ(ep, e`) is a mean load factor that depends on the
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effort level of airport and airline. Random variable L indicates the spread of M . We
assume E (L) = 0 and V (L) = σ2. By these assumptions,

E (M) = µ(ep, e`), V(M) = σ2. (4)

The risk in this study means the volatility of load factor M and is embodied in
σ(standard deviation) above.

We assume mean load factor µ(ep, e`) satisfy the following.

µk(ep, e`) > 0, k ∈ {p, `}, (ep, e`) ∈ IR2
+ (5)

µkk(ep, e`) < 0, k ∈ {p, `}, (ep, e`) ∈ IR2
+ (6)

µp`(ep, e`) = µ`p(ep, e`) < 0, (ep, e`) ∈ IR2
+ (7)

Here we set the followings.

µj(ep, e`) =
∂µ(ep, e`)

∂ej
, µjk(ep, e`) =

∂2µ(ep, e`)
∂ek∂ej

, j, k ∈ {p, `}

(5) means that higher the effort levels, the higher the mean load factor. (6) means
that the rate of increase of mean load factor decreases as effort levels increase. On
the other hand, (7) means that the rate of increase of mean load factor decreases as
the other party’s effort t level increases. 3. Furthermore, we assume µ = µ(0, 0),µ =
limep,e`→∞ µ(ep, e`), 0 < µ and µ < 1. From (5), for any ep, e` ≥ 0, we have µ ≤
µ(ep, e`) ≤ µ.

Airport and airline have their independent profits based on the realized load factor.
In this study, we assume the linear profit factions based on a realized load factor m
as を rk(m) = αkm + βk, k ∈ {p, `}. βk is a fixed profit level not dependent on load
factor and αka parameter that shows the profit per unit load factor and that satisfies
αk > 0, k ∈ {p, `}.

When parties agreed on a load factor guarantee mechanism contract, they have, in
addition to the profit above, the payoff that is defined in the contract and a realized
load factor. In this study, we assume the linear payoff function based on a realized load
factor. This means that if the realized load factor is m, the payoff by the contract from
airport to airline is given as follows4;

q(m) = −γ(m − m0). (8)

If we set m = m0, then we get q(m0) = 0. This means m = m0 is the target load
factor at which the payoff by the contract is zero. The equation (8) shows the payoff
function that is deprived of the upper and lower bound from the second year payoff
function of the actual Noto airport load factor guarantee mechanism contract. In the
real load factor guarantee mechanism contracts, including Noto case, it is likely that γ >
0. Since we think that the cost of efforts or profit functions have no difference between

3(6) and (7) mean that as the amount of efforts increase, the rate of increase of average load factor
decreases. The decreasing rate of increase of average load factor applies for both one’s own efforts and the
other’s efforts. So we call such relationship as strategic substitution. In the Appendix A, we replace the
condition of (7) with the following; µp`(ep, e`) = µ`p(ep, e`) = 0, and try the same analysis.

4In the case of q(m) > 0, airport pays to airline q(m), and on the other hand in the case of q(m) < 0,
airline pays to airport −q(m).
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airport and airline, here we do not think there is a justification for the assumption
γ > 0. So we do our analysis without narrowing the range of γ to the positive range,
γ > 0. Notice that the case of γ = 0 means there is always no payment whatever
the value of a realized load factor, and thus it corresponds to the situation where the
parties do not have any contract. Hereinafter, we call (γ,m0) a linear payoff contract
with its slope being γ and target load factor being m0.

From the above, the profits of airport and airline when their effort levels are (ep, e`)
are as follows;

Wp(ep, e`, γ,m0) = rp(M) − q(M) − cp(ep) = (αp + γ)M − cp(ep) − γm0 + βp (9)
W`(ep, e`, γ,m0) = r`(M) + q(M) − c`(e`) = (α` − γ)M − c`(e`) + γm0 + β`. (10)

Load factor M is random variable and hence the profits are also depending on the
realization of the random variable M . For airport and airline, the fluctuation of profit
or revenue is thought to be a risk factor. In this study, we include the profit fluctuation
risk is included in their utilities. So we use, as their utility functions, mean-variance
utility, in which the utility function is given by the mean value of profit subtracted by
the variance of the profit fluctuation with risk averse parameter for each party. 5 Thus
the utility functions for airport and airline are given by the following;

Fp(ep, e`, γ,m0) = E (Wp(γ,m0; ep, e`)) − λpV(Wp(γ,m0; ep, e`)) (11)
F`(ep, e`, γ,m0) = E (W`(γ,m0; ep, e`)) − λ`V(W`(γ,m0; ep, e`)) (12)

Here λk, k ∈ {p, `} indicates the parameter for risk aversion for airport and airline. In
the equations (9) and (10), the term involving uncertainty is M only. So from (4), (11)
and (12) become

Fp(ep, e`, γ,m0) = (αp + γ)µ(ep, e`) − cp(ep) + βp − γm0 − λp(αp + γ)2σ2 (13)

F`(ep, e`, γ,m0) = (α` − γ)µ(ep, e`) − c`(e`) + β` + γm0 − λ`(α` − γ)2σ2. (14)

3.2 Bargaining on Contracts and Equilibrium Effort Lev-
els

In the real process about the LFGM contract, airport and airline agree a contract
at the beginning of each year and both make each effort on their business in order to
increase the load factor at the year end. Then at the year end, the payoff is calculated

5utility function that satisfies monotonic increase and risk aversion is called risk averse utility function.
If utility function U(·) is differentiable, these two conditions are described as U ′(·) > 0 and U ′′(·) < 0.
When an individual who has risk averse utility function U(·) has uncertain profit that is described as random
variable X and either one of the following two conditions is satisfied, the model that depends only on the
expectation and the variance of X can completely describe the problem of maximizing the expected utility
of that individual.

(1) utility function U(·) is a quadratic function over the possible range of the profit

(2) uncertain profit (random variable) X follows a normal distribution

Hihara (2008) studied the time series analysis of load factor in Japanese domestic air passenger market,
and found the structure of ARIMA (1,1,4). Based on the model, a load factor of the following year can be
predicted with normal distribution. So the condition (2) is satisfied. So in this study, we use mean-variance
utility function. For more details, please see Konno (1995), for example.
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based on the realized load factor and is paid according to the contract. When we apply
these process to the model in section 3.1, then we get the following procedure.

(1) airport and airline bargain and agree on contract (γ,m0)

(2) following the agreed contract(γ,m0), airport and airline, in order to maximize
each utility Fp(ep, e`, γ,m0) and F`(ep, e`, γ,m0), decide and execute the effort
levels

(3) profits of airport Fp(ep, e`, γ,m0) and of airline Fp(ep, e`, γ,m0) are calculated

At the step(2), we assume airport and airline both decide their effort levels according
to Cournot type best response, in which one take the other’s effort level as given. From
these responses, we have their equilibrium effort levels (ep, e`) as Nash equilibrium.

Please notice that in the real process, after the step(3), we still have the following
steps,

(4) according to mean µ(ep, e`) and variance σ2, a realized load factor m is specified

(5) based on contact (γ,m0) and a realized load factor m, payoff q(m) is paid (re-
ceived).

In our model, the uncertainty of load factor is included in the risk averse utility func-
tions. As for the bargaining on contract and decision on effort levels, we can only
consider the process up to the step (3).

4 Equilibrium Effort Levels

In this section, we form the problem of deciding the effort levels of airport and
airline ep and e`, when the contract (γ,m0) is given, according to non-cooperative
game framework and analyze how the equilibrium of such effort levels forms. First, in
the section 4.1, we derive the best response curves (functions) of airport and airline.
Based on the results, in section 4.2, we derive the equilibrium.

About the utility functions of airport and airline in (13) and (14), we set the fol-
lowing;

Gp(ep, e`, γ) = (αp + γ)µ(ep, e`) − cp(ep) (15)
G`(ep, e`, γ) = (α` − γ)µ(ep, e`) − c`(e`). (16)

Then we get,

Fp(ep, e`, γ,m0) = Gp(ep, e`, γ) + βp − γm0 − λp(αp + γ)2σ2 (17)
F`(ep, e`, γ,m0) = G`(ep, e`, γ) + β` + γm0 − λ`(α` − γ)2σ2. (18)

In equations (17) and (18), what depends on effort levels ep and e` is limited
to Gp(ep, e`, γ) and G`(ep, e`, γ). So the equilibrium is decided by considering only
Gp(ep, e`, γ) and G`(ep, e`, γ).

Before going into further analysis, here we define several terms and explain pre-
liminary results. Hereinafter, we describe the partial derivatives of Gp(ep, e`, γ) and
G`(ep, e`, γ) with respect to ep and e` as follows for simplicity.

Gi:j(ep, e`, γ) =
∂Gi

∂ej
(ep, e`, γ), Gi:jk(ep, e`, γ) =

∂2Gi

∂ek∂ej
(ep, e`, γ),
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i, j, k ∈ {p, `}

First we define

Γp =
c′p(0)

µp(0, 0)
− αp

Γ` = α` −
c′`(0)

µ`(0, 0)
.

Then we get

γ ≤ Γp ⇐⇒ Gp:p(0, 0, γ) = (αp + γ)µp(ep, e`) − c′p(ep) ≤ 0 (19)
γ ≥ Γ` ⇐⇒ G`:`(0, 0, γ) = (α` − γ)µ`(ep, e`) − c′`(e`) ≤ 0. (20)

Notice that from (1) and (5), we have Γp > −αp and Γ` < α`. The relation-
ships explained in the following (21)∼(28) can be easily shown from the definitions of
Gp(ep, e`, γ) and G`(ep, e`, γ) and the assumptions stated in section 3.1.

Gp:p(ep, e`, γ) = (αp + γ)µp(ep, e`) − c′p(ep) < 0, γ ≤ −αp, (ep, e`) ∈ IR2
+ (21)

Gp:pp(ep, e`, γ) = (αp + γ)µpp(ep, e`) − c′′p(ep) < 0, γ ≥ −αp, (ep, e`) ∈ IR2
+ (22)

Gp:p`(ep, e`, γ) = (αp + γ)µp`(ep, e`) < 0, γ > −αp, (ep, e`) ∈ IR2
+ (23)

G`:`(ep, e`, γ) = (α` − γ)µ`(ep, e`) − c′`(e`) < 0, γ ≥ α`, (ep, e`) ∈ IR2
+ (24)

G`:``(ep, e`, γ) = (α` − γ)µ``(ep, e`) − c′′` (e`) < 0, γ ≤ α`, (ep, e`) ∈ IR2
+ (25)

G`:`p(ep, e`, γ) = (α` − γ)µ`p(ep, e`) < 0, γ < α`, (ep, e`) ∈ IR2
+ (26)

lim
ep→∞

Gp:p(ep, e`, γ) < 0, γ ∈ IR, e` ≥ 0 (27)

lim
e`→∞

G`:`(ep, e`, γ) < 0, γ ∈ IR, ep ≥ 0 (28)

4.1 The Best Response Curves

We define the best response effort levels of airport when the effort levels of airline
e` and γ are given and the best response effort levels of airline when the effort levels of
airport ep and γ are given as follows;

e∗p(e`, γ) = argmaxep≥0Gp(ep, e`, γ)
e∗`(ep, γ) = argmaxe`≥0G`(ep, e`, γ).

Also the best response curves are defined as follows6;

Cp(γ) = {(e∗p(e`, γ), e`) | e` ≥ 0} (29)
C`(γ) = {(ep, e

∗
` (ep, γ)) | ep ≥ 0}. (30)

First the best response curve of airport Cp(γ) is divided into three parts depending
on the range of γ.

6The description of the right hand side of (29) and (30) shows the set of points (in fact continuous loci) over
the two-dimensional plane IR2

+. For example, the curve Cp(γ) in (29) shows the loci of the point(e∗p(e`, γ), e`)
over the plane IR2

+ when e` moves over the range e` ≥ 0. The descriptions in lemma 4.1 and lemma4.2 in
later part are also the same. This means { coordinates of points | the range of movement of ep or e` }.
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(1) the case of γ ≤ −αp： from (21), for any e` ≥ 0, e∗p(e`, γ) = 0
(2) the case of −αp < γ ≤ Γp： from (19) and (23), we have

Gp:p(0, e`, γ) ≤ Gp:p(0, 0, γ) ≤ 0, e` ≥ 0. (31)

Also from (22), we have Gp:p(ep, e`, γ) ≤ Gp:p(0, e`, γ). With the results and (31), for
any (ep, e`) ∈ IR2

+, we get Gp:p(ep, e`, γ) ≤ 0. So for any e` ≥ 0, we have e∗p(e`, γ) = 0.
(3) the case of γ > Γp： fist we check the change of Gp:p(0, e`, γ) when e` changes.
Noticing Γp > −αp and from (23), Gp:p(0, e`, γ) is a decreasing function with respect
to e`. Also from (19), we have

Gp:p(0, 0, γ) = (αp + γ)µp(0, 0) − c′p(0) > 0.

When we have
lim

e`→∞
Gp:p(0, e`, γ) < 0, (32)

from the explanation above, there exists unique πp(γ) > 0 that satisfies

Gp:p(0, πp(γ), γ) = (αp + γ)µp(0, πp(γ)) − c′p(0) = 0 (33)

and we have

Gp:p(0, e`, γ)
{

> 0, 0 ≤ e` < πp(γ)
≤ 0, e` ≥ πp(γ).

(34)

On the other hand, when (32) is not satisfied, for any e` ≥ 0 we have Gp:p(0, e`, γ) >
0. But by defining πp(γ) = ∞, we can still derive the results of (34). In either case, for
e` satisfying 0 ≤ e` < πp(γ), we have Gp:p(0, e`, γ) > 0. Noticing (22) and (27), there
exists unique Kp(e`, γ) > 0 that satisfies

Gp:p(Kp(e`, γ), e`, γ) = (αp + γ)µp(Kp(e`, γ), e`) − c′p(Kp(e`, γ)) = 0 (35)

and Gp(ep, e`, γ) reaches its maximum at ep = Kp(e`, γ). Therefore, for e` satisfying
0 ≤ e` < πp(γ), we get e∗p(e`, γ) = Kp(e`, γ). In the case of πp(γ) < ∞, for e` satisfying
e` ≥ πp(γ), we have, from (22) and (34), e∗p(e`, γ) = 0.

In summarizing the explanation above, we have the best response curve of airport
in the following lemma 4.1.

Lemma 4.1 The best response curve of airport Cp(γ) is given by the following;

Cp(γ) =
{

{(0, e`) | e` ≥ 0}, γ ≤ Γp

{(Kp(e`, γ), e`) | 0 ≤ e` < πp(γ)} ∪ {(0, e`) | e` ≥ πp(γ)}, γ > Γp.
(36)

Next, we derive the best response curve of airline C`(γ). Just as the case of airport,
we have divide our analysis into three parts depending on the value of γ.
(1) the case of γ ≥ α`： from (24), for any ep ≥ 0, we have e∗`(ep, γ) = 0.
(2) the case of Γ` ≤ γ < α`: from (20) and (26), we have

G`:`(ep, 0, γ) ≤ G`:`(0, 0, γ) ≤ 0, ep ≥ 0. (37)

Also from(25), it can be shown that G`:`(ep, e`, γ) ≤ G`:`(ep, 0, γ). With the result
and (37), for any (ep, e`) ∈ IR2

+, we have G`:`(ep, e`, γ) ≤ 0. So for any ep ≥ 0, we get
e∗`(ep, γ) = 0.
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(3) the case of γ < Γ`： fist we check the change of G`:`(ep, 0, γ) when ep changes.
Noticing Γ` < α` and (26), it is shown that G`:`(ep, 0, γ) is a decreasing function with
respect to ep. Also from　 (20), we have

G`:`(0, 0, γ) = (α` − γ)µ`(0, 0) − c′`(0) > 0.

If the following is satisfied,

lim
ep→∞

G`:`(ep, 0, γ) < 0 (38)

from the explanation above, there exists unique π`(γ) > 0 that satisfies

G`:`(π`(γ), 0, γ) = (α` − γ)µ`(π`(γ), 0) − c′`(0) = 0 (39)

and we have

G`:`(ep, 0, γ)
{

> 0, 0 ≤ ep < π`(γ)
≤ 0, ep ≥ π`(γ).

(40)

On the other hand if (38) does not hold, for any ep ≥ 0, we have G`:`(ep, 0, γ) > 0. In
this case, however, if we defineπ`(γ) = ∞, we still can derive (40). In either case, for ep

satisfying 0 ≤ ep < π`(γ), G`:`(ep, 0, γ) > 0. So noticing (25) and (28), we have unique
K`(ep, γ) > 0 that satisfies

G`:`(ep,K`(ep, γ), γ) = (α` − γ)µ`(ep,K`(ep, γ)) − c′`(K`(ep, γ)) = 0 (41)

and G`(ep, e`, γ) reaches its maximum at e` = K`(ep, γ). So for ep satisfying 0 ≤ ep <
π`(γ), we have e∗`(ep, γ) = K`(ep, γ). If π`(γ) < ∞, for ep satisfying ep ≥ π`(γ), from
(25) and (40), we have e∗`(ep, γ) = 0.

Summarizing the explanation above, we derive the best response curve of airline in
the following lemma 4.2.

Lemma 4.2 The best response curve of airline C`(γ) is given by the following;

C`(γ) =
{

{(ep,K`(ep, γ)) | 0 ≤ ep < π`(γ)} ∪ {(ep, 0) | ep ≥ π`(γ)}, γ < Γ`

{(ep, 0) | ep ≥ 0}, γ ≥ Γ`.
(42)

4.2 Derivation of Equilibrium Effort Levels

As stated above, airport and airline maximizing its utilities by taking the effort level
of the other as given under the Cournot type non-cooperative game. So the equilibrium
effort levels of airport and airline are given by the intersection point of the best response
curves Cp(γ) and C`(γ) derived in section 4.1 as Nash equilibrium.

Here we derive the equilibrium effort levels.
In preparation, we show the following lemma.

Lemma 4.3 In the case of Γp < Γ`, for any γ ∈ (Γp, Γ`), there exists Γ1 ∈ (Γp, Γ`)
that satisfy

πp(γ)
{

< K`(0, γ), Γp < γ < Γ1

≥ K`(0, γ), Γ1 ≤ γ < Γ`
(43)

and there exists Γ2 ∈ (Γp, Γ`) that satisfy

π`(γ)
{

≥ Kp(0, γ), Γp < γ ≤ Γ2

< Kp(0, γ), Γ2 < γ < Γ`.
(44)
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(Proof) First in order show (43), we compare πp(γ) with K`(0, γ). From (23) and (31),
we get lime`→∞ Gp:p(0, e`, Γp) < Gp:p(0, 0, Γp) = 0. For γ that is close enough to Γp

and satisfies γ > Γp, it is shown that (32) and πp(γ) < ∞ hold. So if we do γ ↓ Γp in
equation (33), we can confirm the following holds.

lim
γ↓Γp

πp(γ) = 0 (45)

Also if we differentiate (33) with respect to γ and arrange the terms, we get

π′
p(γ) = − µp(0, πp(γ))

(αp + γ)µp`(0, πp(γ))
> 0. (46)

So we can check that for γ satisfying πp(γ) < ∞ and γ > Γp, πp(γ) is a increasing
function and that for larger γ we get πp(γ) = ∞ 7. On the other hand, if we set, at
(41), ep = 0 and γ ↑ Γ`, we can check that the following holds.

lim
γ↑Γ`

K`(0, γ) = 0 (47)

Also if we differentiate (41) with respect to γ and rearrange terms, we get

∂K`

∂γ
(ep, γ) =

µ`(ep,K`(ep, γ))
(α` − γ)µ``(ep,K`(ep, γ)) − c′′` (K`(ep, γ))

< 0,

γ < Γ`, 0 ≤ ep < π`(γ). (48)

So K`(0, γ) is a decreasing function of γ < Γ`. From (45)∼(48), it is shown that there
exists Γ1 ∈ (Γp, Γ`) that satisfies (43).

Next, in order to show (44), we compare π`(γ) with Kp(0, γ). From (26) and (37),
we get limep→∞ G`:`(ep, 0, Γ`) < G`:`(0, 0, Γ`) = 0. So for γ close enough to Γ` and
satisfying γ < Γ`, (39) and π`(γ) < ∞ hold. So if we do γ ↑ Γ` in (39), we can check
the following holds.

lim
γ↑Γ`

π`(γ) = 0 (49)

Also if we differentiate (39) with respect to γ and rearrange terms, we get

π′
`(γ) =

µ`(π`(γ), 0)
(α` − γ)π`p(π`(γ), 0)

< 0. (50)

So for γ satisfying π`(γ) < ∞ and γ < Γ`, π`(γ) is a decreasing function and for smaller
γ, we haveπ`(γ) = ∞ 8. On the other hand, if we do e` = 0、γ ↓ Γp in (35), we can
confirm that the following holds.

lim
γ↓Γp

Kp(0, γ) = 0 (51)

If we differentiate (35) with respect to γ and rearrange terms, we get

∂Kp

∂γ
(e`, γ) =

µp(Kp(e`, γ), e`)
c′′p(Kp(e`, γ)) − (αp + γ)µpp(Kp(e`, γ), e`)

> 0,

γ > Γp, 0 ≤ e` < πp(γ). (52)

7We could have the case where for all γ > Γp we always get πp(γ) < ∞. Please see the derivation process
of lemma 4.1.

8We could have the case where for all γ < Γ`, we always getπ`(γ) < ∞. Please see the derivation process
of lemma 4.2.
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So Kp(0, γ) is an increasing function of γ > Γp. From (49)∼(52), it is shown that there
exists Γ2 ∈ (Γp, Γ`) satisfying (44). 2

Lemma 4.4 In the case of Γp < Γ`, if Γ1 and Γ2 in lemma 4.3 satisfy Γ1 ≤ Γ2, then,
for any γ ∈ [Γ1, Γ2], there exist (e]

p, e
]
`) that are in the ranges9

e]
p ≤ π`(γ), e]

` ≤ πp(γ) (53)

and that satisfy the following.

e]
p = Kp(e

]
`, γ) (54)

e]
` = K`(e]

p, γ) (55)

（Proof）From γ > Γp, for e` satisfying 0 ≤ e` ≤ πp(γ), we can define Kp(e`, γ)10. If
we differentiate (35) with respect to e` and rearrange terms, we get

∂Kp

∂e`
(e`, γ) =

(αp + γ)µp`(Kp(e`, γ), e`)
c′′p(Kp(e`, γ)) − (αp + γ)µpp(Kp(e`, γ), e`)

< 0. (56)

∂Kp

∂e`
(e`, γ) is a decreasing function of e`. Therefore there exists a unique inverse function

of Kp(e`, γ) with respect to e`, namely J(ep, γ) that satisfy the following for given ep.

Kp(J(ep, γ), γ) = ep (57)

In the above, the range of Jp(ep, γ) is limited to the range that satisfies Kp(πp(γ), γ) ≤
ep ≤ Kp(0, γ). From the definition, the following holds.

J(Kp(πp(γ), γ), γ) = πp(γ) (58)
J(Kp(0, γ), γ) = 0 (59)

If we differentiate (57) with respect to ep and rearrange terms, along with (56), we
get

∂J

∂ep
(ep, γ) =

1
∂Kp

∂ep
(J(ep, γ), γ)

< 0.

J(ep, γ) is a decreasing function of ep. On the other hand, from γ < Γ`, for e` satisfying
0 ≤ ep ≤ π`(γ), we can define K`(ep, γ) 11. If we differentiate (41) with respect to ep

and rearrange terms, we get

∂K`

∂ep
(ep, γ) =

(α` − γ)µ`p(ep,K`(ep, γ))
c′′` (K`(ep, γ)) − (α` − γ)µ``(ep,K`(ep, γ))

< 0. (60)

Noticing Kp(πp(γ), γ) ≥ 0, we have the following.

K`(0, γ) ≥ K`(Kp(πp(γ), γ), γ) (61)

9The ranges include the case of πp(γ) = ∞ or π`(γ) = ∞.
10In the case of πp(γ) = ∞, if we define Kp(πp(γ), γ) = lime`↑πp(γ) Kp(e`, γ), then from (56), this limit

always exists.
11In the case of π`(γ) = ∞, we define K`(π`(γ), γ) = limep↑π`(γ) K`(ep, γ). From (60), this limit always

exists.
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From lemma 4.3, for γ ∈ [Γ1, Γ2], we have the following.

K`(0, γ) ≤ πp(γ) (62)
Kp(0, γ) ≤ π`(γ) (63)

From (58), (61) and (62), the following holds.

K`(Kp(πp(γ), γ), γ) ≤ K`(0, γ) ≤ πp(γ) = J(Kp(πp(γ), γ), γ) (64)

Also from (63) K`(ep, γ) can be defined for 0 ≤ ep ≤ Kp(0, γ). Along with (59), we
have

K`(Kp(0, γ), γ) ≥ 0 = J(Kp(0, γ), γ). (65)

(64) and (65) show that the relative value ranking of K`(ep, γ) and J(ep, γ) change when
ep increases from Kp(πp(γ), γ) to Kp(0, γ). So there exists e]

p ∈ [Kp(πp(γ), γ),Kp(0, γ)]
that satisfies

K`(e]
p, γ) = J(e]

p, γ). (66)

From (64), we have e]
p ≤ π`(γ). If we define e]

`, from (55), e]
` = K`(e

]
p, γ), then from

(57) and (66) (54) holds. From (61) and (62), we have e]
` ≤ πp(γ). Therefore we have

the contents of the lemma. 2

With the explanation above, the equilibrium effort levels (e∗p, e
∗
`) can be derived as

follows.

Proposition 4.5 (1) In the case of Γ` ≤ Γp： we get the unique equilibrium effort
levels as follows.

(e∗p, e
∗
`) = (0, K`(0, γ)), γ < Γ`

(e∗p, e
∗
`) = (0, 0), Γ` ≤ γ ≤ Γp

(e∗p, e
∗
`) = (Kp(0, γ), 0), γ > Γp

(2) In the case of Γ` > Γp： if, for any γ ∈ (Γp, Γ`), Cp(γ) and C`(γ) are crossing at
one point 12, then there exists a unique equilibrium effort level. It is given as follows.

(e∗p, e
∗
`) = (0,K`(0, γ)), γ < Γ1

(e∗p, e
∗
`) = (e]

p, e
]
`), Γ1 ≤ γ ≤ Γ2

(e∗p, e
∗
`) = (Kp(0, γ), 0), γ > Γ2

Here Γ1, Γ2 are given in lemma 4.3 and e]
p, e

]
` are given in lemma 4.4.

（Proof）(1) the case of Γ` ≤ Γp： From (36) and (42), for γ < Γ`, we have (0,K`(0, γ)) ∈
Cp(γ) ∩ C`(γ). So (0,K`(0, γ)) is the equilibrium. Similarly for Γ` ≤ γ ≤ Γp, we have
(0, 0) ∈ Cp(γ) ∩ C`(γ). For γ > Γp, we have (Kp(0, γ), 0) ∈ Cp(γ) ∩ C`(γ). So these

12In general, there are possibilities of cases where Cp(γ) and C`(γ) have multiple crossing points and hence
there exist multiple equilibria of effort levels. In that case, we need to deal with the problem of considering
which equilibrium can be realized. In this paper, in order to avoid such complication and concentrate more
on the wider setting of our analysis, which are to look into the negotiation of contract in addition to the
equilibrium effort levels during the contract period, we proceed our analysis under the condition in which,
for γ ∈ (Γp, Γ`), Cp(γ) and C`(γ) make cross at one point.
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are the equilibrium. From (36) and (42), we can check that each of these equilibria is
unique.
(2) the case of Γ` > Γp： From (36) and (42), for γ ≤ Γp, we have (0,K`(0, γ)) ∈
Cp(γ)∩C`(γ). For γ ≥ Γ`, we have (Kp(0, γ), 0) ∈ Cp(γ)∩C`(γ). So they are equilibrium.

Hereinafter, we concentrate only on the case of Γp < γ < Γ`. From lemma 4.3,
there exist Γ1, Γ2. For any γ ∈ (Γp, Γ`), Cp(γ) and C`(γ) make cross at one point,
we get Γ1 ≤ Γ2. This can be checked by the following. If Γ2 < Γ1, for γ satisfying
Γ2 < γ < Γ1, we get the following from (43) and (44).

0 < πp(γ) < K`(0, γ), 0 < π`(γ) < Kp(0, γ)

Here, (Kp(0, γ), 0) and (0,K`(0, γ)) belong to Cp(γ) ∩ C`(γ). This is a contradiction of
single crossing point assumption above. So it must be that Γp < Γ1 ≤ Γ2 < Γ`. From
4.4, there exists (e]

p, e
]
`).

(2-a) the case of Γp ≤ γ < Γ1, from (43) (e∗p, e
∗
`) = (0,K`(0, γ)) ∈ Cp(γ) ∩ C`(γ). So

(0,K`(0, γ)) is the equilibrium.

(2-b) the case of Γ1 ≤ γ ≤ Γ2, there exists (e]
p, e

]
`) in lemma 4.4 and it belongs, from

(53), to Cp(γ) ∩ C`(γ) and is the equilibrium.

(2-c) the case of Γ2 < γ ≤ Γ`, from (44) we get (e∗p, e
∗
`) = (Kp(0, γ), 0) ∈ Cp(γ) ∩ C`(γ).

So (Kp(0, γ), 0) is the equilibrium.

If, for γ ∈ (Γp, Γ`), Cp(γ) and C`(γ) make cross at one point, then in either case of
(2-a)∼(2-c), the equilibrium is unique. Therefore, the proposition 4.5 is proven. 2

5 Negotiation Game Analysis of Contract

In the section 4, we derived the equilibrium effort level when the contract (γ,m0)
is given. As stated in subsection 3.2, the real process is that parties first agree on
a contract and based on the contract they choose the effort levels. In our setting of
analysis, they make negotiation on the concrete contents of the contract while they are
considering the equilibrium effort levels during the contract period.

In this section, based on the results in subsection 4, we analyze how the concrete
contents of a contract are agreed upon by the negotiation game framework.

Here we consider a problem of deciding the contents of contract (γ,m0) by the
negotiation between airport and airline. When the slope γ of the payoff function (8)
satisfies γ = 0, the payoff is always zero whatever the value of target load factor m0. So
the case of γ = 0 is equivalent to no contract case. Using this structure, we make the
setting that the situation where they cannot agree on a contract by negotiation means
the situation where they choose the contract of (0, ·) 13. We make (0, ·) as a breaking
point and the negotiation between airport and airline is assumed to be solved by the
generalized Nash bargaining solution.

We define the utility functions of airport and airline when they choose the equi-
librium effort levels (e∗p, e

∗
` ) as derived in subsection 4 when the contract (γ,m0) is

given.

Fp(γ,m0) = Gp(γ) + Hp(γ) − γm0 (67)
F`(γ,m0) = G`(γ) + H`(γ) + γm0 (68)

13Hereinafter we state the no-contract case as (0, ·) since γ = 0 means no payoff whatever the value of m0.
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Here, we set14.

Gp(γ) = (αp + γ)µ(e∗p, e
∗
`) − cp(e∗p) (69)

G`(γ) = (α` − γ)µ(e∗p, e
∗
`) − c`(e∗` ) (70)

Hp(γ) = βp − λpσ
2(αp + γ)2

H`(γ) = β` − λ`σ
2(α` − γ)2.

Also we set
F (γ) = Fp(γ,m0) + F`(γ,m0). (71)

Here notice that Gk(γ),Hk(γ), F (γ) do not depend on m0. Airport and airline can get
at least the utility levels of Fp(0, ·) and F`(0, ·) corresponding to the case of (0, ·). So
the contract that can be agreed upon satisfies the condition;

Fk(γ,m0) > Fk(0, ·), k ∈ {p, `}. (72)

The range of contract indicated by (72) is set by
Ω = {(γ,m0) ∈ IR2 | Fk(γ,m0) > Fk(0, ·), k ∈ {p, `}}.
The negotiation power balance between the negotiating parties is thought to be very
important in reality. So we set the negotiation power of airport as τ ∈ (0, 1)according to
the general negotiation game framework. Next we set the generalized Nash bargaining
solution when the breaking points of airport and airline are Fp(0, ·) and F`(0, ·). First
by defining the generalized Nash product as follows.

L(γ,m0) = {Fp(γ,m0) − Fp(0, ·)}τ{F`(γ,m0) − F`(0, ·)}1−τ

Then the generalized Nash bargaining solution is set by

(γ∗,m∗
0) = argmax(γ,m0)∈ΩL(γ,m0). (73)

Also we define the following.

γ] = argmaxγ∈IRF (γ) (74)

Then we get the following proposition.

Proposition 5.1 In the case of γ] 6= 0, the generalized Nash bargaining solution
(γ∗,m∗

0) in negotiation game between airport and airline to decide the contract is given
by

γ∗ = γ]

m∗
0 =

1
γ]

[(1 − τ){Gp(γ]) + Hp(γ]) − Gp(0) − Hp(0)}

−τ{G`(γ]) + H`(γ]) − G`(0) − H`(0)}]. (75)

On the other hand, in case of γ] = 0, (0, ·) is the generalized Nash bargaining solu-
tion. There is no other generalized Nash bargaining solution other than the solutions
above.

14The term Fk, Gk, k ∈ {p, `} is used in (15)∼(18) in subsection 4 as Fk(ep, e`, γ,m0) and Gk(ep, e`, γ).
The functions of (67)∼(70) are derived when we put (ep, e`) = (e∗p, e

∗
` ) into (15)∼(18). Hereinafter we change

the contents of these functions and keep using the same notation of such functions.
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（Proof）First we set

∆Fk(γ) = Gk(γ) + Hk(γ) − Gk(0) − Hk(0), k ∈ {p, `}. (76)

Then we can describe L(γ,m0) as follows.

L(γ,m0) = {∆Fp(γ) − γm0}τ{∆F`(γ) + γm0}1−τ (77)

We can check the following holds.

Ω = {(γ,m0) | − ∆F`(γ) < γm0 < ∆Fp(γ)} (78)

From (77), L(γ,m0) is upper 凸 with respect to m0 in Ω. The first order condition
of optimality leads to the optimal target load factor m∗

0 that satisfies

∂L

∂m0
(γ,m∗

0) = γ{∆Fp(γ) − γm∗
0}τ−1{∆F`(γ) + γm∗

0}−τ{(1 − τ)∆Fp(γ) − τ∆F`(γ) − γm∗
0}

= 0.

Considering (76) and from (78), we get the following.

γm∗
0 = (1 − τ)∆Fp(γ) − τ∆F`(γ) (79)

Notice that from τ ∈ (0, 1), in the case of γ 6= 0, we get (γ,m∗
0) ∈ Ω. Putting (79)

into (77) and rearranging terms, we get the following.

L(γ,m∗
0) = τ τ (1 − τ)1−τ{∆Fp(γ) + ∆F`(γ)} = τ τ (1 − τ)1−τ{F (γ) − F (0)} (80)

Therefore it is shown that γ∗ = γ]. From (79), in the case of γ] 6= 0, m∗
0 is given by

(75). In the case of γ] = 0, for any m0, we get L(0,m0) = 0. So (0, ·) is the generalized
Nash bargaining solution. The γ that maximizes (80) is limited to γ = γ]. So it is
shown that there is no other generalized Nash bargaining solution. 2

From the characteristic of Nash bargaining solution, the contract (γ∗,m∗
0) as Nash

bargaining solution gives pareto optimality to the parties. In our model, for any m0,
(γ∗,m0) gives the pareto optimality.

Corollary 5.2 (1) For any m0 ∈ IR, contract (γ∗,m0) gives pareto optimality.
(2) In the case of γ∗ 6= 0, for any γ 6= γ∗ and for any m0 ∈ IR, contract (γ,m0) does
not give pareto optimality.

（Proof）(1) From the definition of γ∗, for any contract (γ′,m′
0) that is other than

(γ∗,m0), the following holds.

Fp(γ′,m′
0) + F`(γ′,m′

0) = F (γ′) ≤ F (γ∗) = Fp(γ∗,m0) + F`(γ∗, m0)

Therefore, Fp(γ′,m′
0) > Fp(γ∗,m0) and F`(γ′,m′

0) > F`(γ∗,m0) do not hold at the
same time.
(2) In the case of γ 6= γ∗, we get F (γ) < F (γ∗). From (67) and (68), we get the
following.

Gp(γ) + Hp(γ) − γm0 + G`(γ) + H`(γ) + γm0 < Gp(γ∗) + Hp(γ∗) + G`(γ∗) + H`(γ∗)
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So we have

G`(γ)+H`(γ)+γm0−{G`(γ∗)+H`(γ∗)} < Gp(γ∗)+Hp(γ∗)−{Gp(γ)+Hp(γ)−γm0.}

If γ∗ 6= 0, we can choose m′
0 that satisfies

G`(γ) + H`(γ) + γm0 − {G`(γ∗) + H`(γ∗)} < γ∗m′
0

< Gp(γ∗) + Hp(γ∗) − {Gp(γ) + Hp(γ) − γm0} (81)

From (81), the followings hold.

Fp(γ,m0) = Gp(γ) + Hp(γ) − γm0 < Gp(γ∗) + Hp(γ∗) − γ∗m′
0 = Fp(γ∗, m′

0) (82)
F`(γ,m0) = G`(γ) + H`(γ) − γm0 < G`(γ∗) + H`(γ∗) − γ∗m′

0 = F`(γ∗,m′
0) (83)

Therefore, (γ0,m0) does not give the pareto optimality. 2

Corollary 5.3 γ∗ in (73) exists in the range of −αp ≤ γ∗ ≤ α`.

（Proof）From (67), (68) and (71), if we define as follows;

G(γ) = (αp + α`)µ(e∗p, e
∗
`) − cp(e∗p) − c`(e∗` )

H(γ) = −(λp + λ`)σ2

(
γ − λ`α` − λpαp

λp + λ`

)2

+
(λ`α` − λpαp)2

λp + λ`
σ2

− λpα
2
pσ

2 − λ`α
2
`σ

2 + βp + β`

then we have F (γ) = G(γ) + H(γ). With the assumptions λp, λ` > 0, we get

−αp <
λ`α` − λpαp

λp + λ`
< α`.

This means that H(γ) monotonically increases over the range of γ < −αp, and mono-
tonically decreases over the range of γ > α`.

Next we check the increase/decrease of G(γ). First in the case of Γ` ≤ Γp and
γ < Γ`, or in the case of Γ` > Γp and γ ≤ Γ1, from the proposition 4.5, the equilibrium
is given by (e∗p, e

∗
`) = (0,K`(0, γ)). From (41), we get

(α` − γ)µ`(0, K`(0, γ)) − c′`(K`(0, γ)) = 0.

Noticing (48), we have the following.

G′(γ) =
∂K`

∂γ
(0, γ)

{
(αp + α`)µ`(0,K`(0, γ)) − c′`(K`(0, γ))

}
> 0, γ < −αp

Therefore for γ < −αp, G(γ) increases monotonically.
Finally we analyze in the case of Γ` ≤ Γp and γ > α`, or in the case of Γ` > Γp and

γ ≥ Γ2. In these cases, the equilibrium is given by (e∗p, e
∗
`) = (Kp(0, γ), 0). From (35),

we have
(αp + γ)µp(Kp(0, γ), 0) − c′p(Kp(0, γ)) = 0.

Noticing (52), we have the following.

G′(γ) =
∂Kp

∂γ
(0, γ)

{
(αp + α`)µp(Kp(0, γ), 0) − c′p(Kp(0, γ))

}
< 0, γ > α`

So for γ > α`, G(γ) decreases monotonically.
Therefore F (γ) increase monotonically for γ < −αp and decreases monotonically

for γ > α`. Hence the proposition is proven. 2
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6 Analysis on Contract

In our study we focus on the linear payoff function as indicated in (8) as contract
structure. Parameters to be decided about the contract are two, namely slope γ∗ and
target load factorm∗

0 of the linear payoff function.
Proposition 4.5 states that when contract is decided by negotiation game, first from

(74), slope γ∗ is agreed and then target load factor is from (75), agreed. The slope γ∗

9is agreed upon so as to maximize the combined utility levels of airport and airline,
and it does not depend on the negotiation power balance τ . Also from the explanation
in subsection 4, the equilibrium effort levels of airport and airline depend only on the
agreed slope γ∗ and not on the agreed load factor m∗

0. Therefore γ∗ has the function
to incentivize parties’ effort levels so as to maximize the combined utility levels of both
parties.

On the other hand, the target load factor m∗
0 in (75) is agreed upon in a manner

to distribute the increase of the utility level by agreeing a contract in accordance with
the negotiation power balance τ . The agreed load factor depends on negotiation power
balance. In this sense, the agreed target load factor m∗

0 has the function of distributing
the maximized combined utility levels by agreeing the slope γ∗ in a balanced manner
between airport and airline. This situation is easily confirmed by seeing that in corollary
5.2, the contract with γ = γ∗ gives the pareto optimality regardless of the value of m0.

The negotiation game in general involves the situation where the interests of two
parties are in conflict with each other. The result of negotiation game does not always
guarantees the maximization of the combined utility levels of the parties. In our model,
γ∗ maximizes the combined utility levels. In this sense, the linear payoff function
structure is playing an important role. In our linear payoff function model, the fact
that the terms of −γm0 and γm0 that are included in the utility functions of airport and
airline are cancelled out in the combined utility levels enables the separation of γ and
m0 and the maximization of the combined utility levels by γ only. Also this is possible
by the fact that our utility functions are the mean-variance utility functions. Without
either one of the two characteristics, linear payoff function or the mean-variance utility
function, the clear solution of γ∗ in (74) is not possible.

At corollary 5.3, we show −αp ≤ γ∗ ≤ α`. If we have a contract of γ > α`, α`−γ < 0
in (70). So airline does not have any incentive to make effort to increase the mean load
factor. On the other hand, if we have a contract of γ < −αp, airport does not have
an incentive to make effort. In such two cases, only one of the two ends up in making
efforts. We think this is why γ∗ is in the range of corollary 5.3.

Although the range for γ] in (74) is shown in corollary 5.3, we cannot explicitly
derive it in more general model. In order to look into the concrete characteristics, we
use numerical examples by picking up some concrete models in the following.

First, with µ > µ > 0 and δ, ξ > 0, µ(ep, e`) is given as concrete functions as follows.

µ(ep, e`) = µ − (µ − µ)e−δep−ξe` = µ − ∆µe−δep−ξe` ; ∆µ = µ − µ > 0

Also with κ, η, ζ, ν > 0, cp(ep) and c`(e`) is set as concrete functions as follows.

cp(ep) = κ(eηep − 1)
c`(e`) = ζ(eνe` − 1)
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In this case, we can easily check that (1)∼(7) hold. If we calculate the concrete
example according to the explanation in subsection 4, we get the followings.

Γp =
κη

∆µδ
− αp

Γ` = α` −
ζν

∆µξ

πp(γ) =
1
ξ

ln
(αp + γ)∆µδ

κη
, γ ≥ Γp

Kp(e`, γ) =
1

δ + η

{
−ξe` + ln

(αp + γ)∆µδ

κη

}
, γ ≥ Γp, 0 ≤ e` ≤ πp(γ)

π`(γ) =
1
δ

ln
(α` − γ)∆µξ

ζν
, γ ≤ Γ`

K`(ep, γ) =
1

ξ + ν

{
−δep + ln

(α` − γ)∆µξ

ζν

}
, γ ≤ Γ`, 0 ≤ ep ≤ π`(γ)

Also in the case of Γ` > Γp, Γ1 and Γ2 in lemma 4.3 can be calculated as unique
solution that satisfies{

∆µδ

κη
(αp + Γ1)

}1/ξ

=
{

∆µξ

ζν
(α` − Γ1)

}1/(ξ+ν)

, Γ1 ∈ (Γp,Γ`){
∆µξ

ζν
(α` − Γ2)

}1/δ

=
{

∆µδ

κη
(αp + Γ2)

}1/(δ+η)

, Γ2 ∈ (Γp, Γ`).

Further, since Kp(e`, γ) and K`(ep, γ) are both linear functions of e` or ep, we can
compare the slope of the two linear functions. For any γ ∈ (Γp, Γ`), it is shown that
Cp(γ) and C`(γ) make cross at one point only.

The solutions for (54) and (55) are calculated as

e]
p =

1
ην + ηξ + δν

{
(ν + ξ) ln

(αp + γ)∆µδ

κη
− ξ ln

(α` − γ)∆µξ

ζν

}
e]
` =

1
ην + ηξ + δν

{
−δ ln

(αp + γ)∆µδ

κη
+ (δ + η) ln

(α` − γ)∆µξ

ζν
.

}
Then we have the equilibrium effort levels by putting these results into proposition

5.1.
Now we further put concrete numbers into the examples of functions above. Based

on the real revenue scale and fare range, we set the parameters for base case as follows.

µ = 0.4, µ = 0.85, δ = 1, ξ = 1
κ = 0.189, η = 0.1, ζ = 0.189, ν = 0.1
αp = 1.0, α` = 1.4, βp = 0, β` = 0
λp = 0.25, λ` = 0.25, σ = 0.04, τ = 0.35

(84)

The concrete contract calculated from parameters in (84) gives us slope of linear payoff
function γ∗ = 0.1997 and target load factor m∗

0 = 0.6480. If we calculate the concrete
contract by changing only one parameter in (84) at a time without changing the other
parameters, we get the results of contracts and mean load factors as in the table 1.

In general, we can observe from the table 1 that one parameter change brings not
large change into contracts. This tendencies is more significant in the cases of slope
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Table 1: Impact of Parameter Value Change on Contract
Parameter Value Change γ∗ m∗

0 µ(e∗p, e
∗
`)

Base Case 0.1997 0.6480 0.8315
σ = 0.08 0.1997 0.6452 0.8315
τ = 0.7 0.1997 0.6364 0.8315

αp = 1.05 0.1747 0.6519 0.8319
λ` = 0.275 0.2007 0.6480 0.8315
ζ = 0.1984 0.1997 0.6433 0.8311

γ∗ of linear payoff functions. At equilibrium, mean load factor is around 83%. This
is much higher than the mean load factor µ(0, 0) = µ = 40% without any effort. On
average in these cases, payoff is made from airline to airport.

Next we see the situation when the values of parameters are changed. When the
negotiation power of airport doubles (τ = 0.7), slope is unchanged 15, and target load
factor decreases. The contract becomes more favorable to airport in the case, since
the payment target to airport is lowered. When the index parameter αp of airport’s
independent profit increases by 5% (αp = 1.05), slope decreases but target load factor
increases. The decrease of slope makes the unit of payment from airport to airline
decrease. The productivity of airport increases because of the parameter change. So
this could mean that the decreased slope slows down the payment from more produc-
tive airport, thus makes incentives to encourage more efforts of airport relatively, and
changes the equilibrium so as to maximize the combined utility levels of the two parties.

These kinds of observations are based on some specific models and some concrete
parameter values. In order to look into the more general characteristics of contracts
with linear payoff functions, further varieties of models and more detailed numerical
analyses will be needed.

7 Concluding Remarks

In this paper, we analyze the contract with linear payoff function (a simplified version
of Noto airport LFGM contract) with the models of two-stage games. At the first stage,
airport and airline negotiate the contents of a contract with linear payoff functions. At
the second stage, we set they play efforts-making games under the Cournot-type non-
cooperative game settings.

The results show that the agreed (optimal) slope of the linear payoff function does
not depend on negotiation power balance and it is agreed so as to maximize the com-
bined utility levels of the two players. This contract brings them the pareto optimality.
Also it is shown that the agreed (optimal) load factor is decided based on the util-
ity level increase by the contract and negotiation power balance between the contract
parties in addition to the agreed slope.

In the contract of linear payoff functions, the slope has the function of parameter
that converts the state = realized load factor into payment. In this sense, slope is

15From proposition 5.1, γ∗ does not depend on τ .
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indirectly rewarding the effort through the state = realized load factor and it has the
incentives to encourage efforts of the contract parties.

Also the payoff of the contract has the function to stabilize the profit fluctuation. So
the contract has the function of risk allocation/sharing with such mitigating payment
to profit fluctuating risk. Slope of such linear payoff contract sets the scale of payment.
As already stated, slope is agreed upon so as t maximize the combined utility levels.

The target load factor of such linear payoff risk sharing contract sets the common
target for the two parties, and it has function to decide the direction of reward payment
(incentive to encourage effort) and risk mitigating payment. The generalized Nash
bargaining solution brings the agreed load factor that allocates the utility increase by
the contract in a ”balanced” way along with the negotiation power balance and the
agreed slope. By ”balanced,” we mean that the allocation by the agreed load factor
does not tolerate one-side victory for either party.

Our study utilizes the good maneuverability of linear payoff structure and mean-
variance utility and derives the analytically clear solution of contract from two-stage
game between two risk averse players. We think these results contribute to the more
clear understanding of risk allocation function and incentive structure design of risk
sharing linear contract between airport and airline. Also our analysis of risk sharing
mechanism and incentive structure of such contracts gave useful guidance to airports
and airlines who might consider making linear risk sharing contracts and policy-makers
who would like to evaluate such risk sharing contracts from the standpoints of their
effects on entire aviation networks.

On the other hand, we have the remaining points for further research. The analytical
solution of upper/lower bounds of piece-wise linear payoff function in the actual Not
airport LFGM contract, and analysis of the zero payment special range around target
load factor are the example of such points. Also analysis of airfare and route structure
with these risk sharing contracts between airport and airline is another important area
for future research from the public policy standpoints.
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Appendix：
The Case of µp`(ep, e`) = µ`p(ep, e`) = 0

In the main part of the study, we derived the equilibrium under the assumption of

µp`(ep, e`) = µ`p(ep, e`) < 0,

which is indicated by (7). The assumption by (7) mean that as the level of efforts
increases, the rate of increase of average load factor decreases. This assumption seems
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realistic. On the other hand, there may be a case such that the rate of increase does
not depend on the other’s effort levels. This means;

µp`(ep, e`) = µ`p(ep, e`) = 0 (85)

And such situation might be closer to the real situation. Therefore in this appendix, we
replace (7) with (85) as our assumption and derive the equilibrium. In the following,
we assume all the assumptions in the section 3 hold except for (7). We use the same
notations in the section of 4 unless we specifically indicate. The analysis follows the
same process as in the section of 4 and the section of 5. First we derive the best response
functions (curves) by airport and airline, and then we calculate the equilibrium effort
levels as the crossing of the two best response functions (curves).

By µp`(ep, e`) = µ`p(ep, e`) = 0, (23) and (26) are modified as

Gp:p`(ep, e`, γ) = 0, γ ∈ IR, (ep, e`) ∈ IR2
+ (86)

G`:`p(ep, e`, γ) = 0, γ ∈ IR, (ep, e`) ∈ IR2
+. (87)

From (86), Gp:p(ep, e`, γ) does not depend on e`. So in the following, we use the
notation of Gp:p(ep, ·, γ). Similarly, from (87), G`:`(ep, e`, γ) does not depend on ep. So
we use the notation of G`:`(·, e`, γ).

First, we derive three cases for the best response curves of airport Cp(γ) depending
on the ranges of γ.
(1) the case of γ ≤ −αp： from (21), for any e` ≥ 0, we have e∗p(e`, γ) = 0.
(2) the case of −αp < γ ≤ Γp： from (19) and (22), for any ep ≥ 0, Gp:p(ep, ·, γ) ≤
Gp:p(0, ·, γ) ≤ 0. So we have e∗p(e`, γ) = 0.
(3) the case of γ > Γp： noticing Γp > −αp and from (19), we have

Gp:p(0, ·, γ) = (αp + γ)µp(0, ·) − c′p(0) > 0. (88)

Therefore, noticing (22) and (27), we have unique e[
p > 0 that satisfies

Gp:p(e[
p, ·, γ) = (αp + γ)µp(e[

p, ·) − c′p(e
[
p) = 0. (89)

Gp(ep, e`, γ) is at maximum at ep = e[
p. Therefore, for any e` ≥ 0, we have e∗p(e`, γ) = e[

p.

Lemma 7.1 The best response curve of airport Cp(γ) is given by the following;

Cp(γ) =
{

{(0, e`) | e` ≥ 0}, γ ≤ Γp

{(e[
p, e`) | e` ≥ 0}, γ > Γp.

(90)

Next, we derive the best response curve of airline C`(γ).
(1) the case of γ ≥ α`： from (24),　 for any ep ≥ 0, we have e∗` (ep, γ) = 0.
(2) the case of Γ` ≤ γ < α`： from (20) and (25), for any e` ≥ 0, we have G`:`(·, e`, γ) ≤
G`:`(·, 0, γ) ≤ 0. Therefore e∗`(ep, γ) = 0.
(3) the case of γ < Γ`： noticing Γ` < α` and from (20),

G`:`(·, 0, γ) = (α` − γ)µ`(·, 0) − c′`(0) > 0. (91)

So noticing (25) and (28), we have unique e[
` > 0 that satisfies the following;

G`:`(·, e[
`, γ) = (α` − γ)µ`(·, e[

`) − c′`(e
[
`) = 0. (92)

G`(ep, e`, γ) is at its maximum at は e` = e[
`. Therefore for any ep ≥ 0, we have

e∗`(ep, γ) = e[
`.
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Lemma 7.2 The best response curve of airline C`(γ) is give by the following;

C`(γ) =
{

{(ep, e
[
`) | ep ≥ 0}, γ < Γ`

{(ep, 0) | ep ≥ 0}, γ ≥ Γ`.
(93)

With the argument above, we have the equilibrium as follows;

Proposition 7.3 (1) the case of Γ` ≤ Γp： the equilibrium is unique and is given as;

(e∗p, e
∗
`) = (0,K`(0, γ)), γ < Γ` (94)

(e∗p, e
∗
`) = (0, 0), Γ` ≤ γ ≤ Γp (95)

(e∗p, e
∗
`) = (Kp(0, γ), 0), γ > Γp. (96)

(2) the case of Γ` > Γp： the equilibrium is unique and is given as;

(e∗p, e
∗
`) = (0,K`(0, γ)), γ < Γp (97)

(e∗p, e
∗
`) = (e[

p, e
[
`), Γp ≤ γ ≤ Γ` (98)

(e∗p, e
∗
`) = (Kp(0, γ), 0), γ > Γ`. (99)

（proof）(1) Depending on the range of γ, proof is given by lemma 7.1 and lemma 7.2.
(2) In the cases of γ < Γp and γ > Γ`, proof is given by lemma 7.1.

In the case of Γp ≤ γ ≤ Γ`, on the two dimension plane of (ep, e`), Cp(γ) is a
perpendicular line ep = e[

p > 0 and C`(γ) is a horizontal line e` = e[
` > 0. So Cp(γ) and

C`(γ) cross each other only at (ep, e`) = (e[
p, e

[
`). Therefore, the equilibrium is unique

and it is (e[
p, e

[
`). 2
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