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I. INTRODUCTION 

Preserving price stability is a main policy objective of national central banks. In practice, due to 

the existence of operation lag (or effect lag) of monetary actions, the central banks make 

monetary policy decisions based on the short and medium-term outlook for inflation rather than 

its observed values. Thus, accurate forecast of inflation plays a key role in taking effective and 

efficient policy measures by monetary authority.  

Over the past decades a number of models, ranging from simple univariate time series models to 

fully fledged, sophisticated structural macroeconomic models (such as dynamic stochastic 

general equilibrium models), have been developed and used by central banks for forecasting key 

macroeconomic variables such as inflation, GDP growth and so on. Moreover, due to the recent 

advancement in computing technology and availability of big data set, machine learning (ML) 

methods have drawn attention and been considered as potential alternatives to statistical 

forecasting models typically used by monetary authorities. The ML methods provide us with 

opportunity to better handle the main issues (such as nonlinearity, multi-collinearity, predictor 

relevance and dimensionality) from which traditional statistical forecasting techniques based on 

ordinary least square method usually suffer. Moreover, ML methods provide chances to find 

optimal bias-variance trade-off1 for the forecasting model, leading to more accurate forecasts. 

Since 1990, inflation targeting framework has been practiced in many countries. For instance, the 

central bank of Mongolia (BoM) has adopted an inflation targeting regime in 2007 for better 

fulfilling its price stability objective2. However, due to its forward looking manner, a well-

                                                             
1 The concept of bias-variance trade-off lies at the heart of forecasting and the machine learning 

literatures. If the loss function for forecasting model is quadratic, the expected prediction error to 

minimize is decomposed into three terms; namely squared bias, variance and irreducible error. Here, 

variance captures how much the learned model changes if we train it on a different training dataset. 

Bias represents the difference between the expected value predicted by the model and the correct value. 

Unfortunately, it is unable to lower both bias and variance at the same time. Generally, the more complex 

prediction models, the higher variance and the less bias.   
2 The BoM has developed and been using a number of models for constructing short and medium term 

inflation forecasts, namely Structural Vector Autoregressive (SVAR) model, Bayesian Vector 

Autoregressive (BVAR) model, Seasonal Autoregressive Integrated Moving Average (SARIMA) model 

and Factor Augmented Vector Autoregressive (FAVAR).  
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functioning inflation forecasting framework is strongly required for implementing the regime 

successfully.  

In this analysis, I conduct a horse race analysis using several popular machine learning 

algorithms (Ridge, Lasso, Elastic net and Extreme gradient boosting algorithm), the factor model 

and the traditional univariate AR model in forecasting the one to four quarter ahead inflation for 

Mongolia. The predictions experiments are based on recursive out-of-sample forecasting 

procedure.  

II. LITERATURE SURVEY 

This section refers the findings of several studies that investigate the inflation forecasting which 

used the ML methods and the literatures on the inflation forecasting in Mongolian.  

Over the past decade, the application of ML and big data has been growing rapidly in the 

literatures relevant to forecasting inflation. The Nakamura (2005) is an early attempt to apply 

neural networks for forecasting U.S inflation. Inoue and Kilian (2008) considered U.S. inflation 

forecasts from lasso and ridge regression. The recent popular papers, in which ML methods have 

been used to predict inflation, include Chakraborty and Joseph (2017), Garcia et al. (2017), 

Medeiros et al. (2019) and Maehashi and Shintani (2020), among others. The results of the 

studies show that ML methods are able to produce more accurate inflation forecasts than 

benchmark models. For example, in Medeiros et al. (2019), authors applied some ensemble ML 

methods to U.S inflation forecasts. Authors found that random forest model dominates all other 

models. Chakraborty and Joseph (2017) explored areas of application of ML to central banking 

and policy analyses. They presented three specific case studies and one of them was related to 

projection exercise for UK’s inflation using ML methods - Ridge regression, Nearest Neighbors, 

Random Forest, Neural Networks, Support Vectors. The results show that ML methods 

outperform benchmarks in the form of VAR and AR models. In Maehashi and Shintani (2020), 

authors conducted a horse race analysis using factor models and 9 different ML methods in 

forecasting the Japanese 7 target macroeconomics variables including inflation. Authors found 

that ML methods perform particularly well for longer forecast horizons and the joint application 

of factor models and ML shows better result than factor models or ML alone. 

There is also a growing body of literature on inflation forecasting in Mongolia. For instance, 

Doojav Gan-Ochir (2011) have used SARIMA model and Davaadalai et al. (2011) have used 
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BVAR model to forecast inflation in Mongolia. In Altan-ulzii and Ganbat (2018), authors have 

employed a principal component based FAVAR model to forecast short-term inflation in 

Mongolia using big data. The results have shown that FAVAR model performs better than 

traditional univariate auto regressive model. 

III. EMPIRICAL MODELS 

This section provides a brief description of the benchmark and different machine learning 

models used in the paper for constructing one to four quarter ahead forecasts of inflation in 

Mongolia. The multi-step ahead forecasting approach considered here is a direct approach in 

which ℎ period ahead inflation (𝜋𝑡+ℎ) is modeled as a function of predictor variables observed 

and available at period 𝑡. 

𝝅𝒕+𝒉 = 𝑭(𝑿𝒕) + 𝒖𝒕+𝒉 

where 𝐹(𝑥𝑡) is a functional mapping of predictors, 𝑢𝑡+ℎ is the forecast error, and 𝑋𝑡 =

(𝑥1𝑡 , …  , 𝑥𝑁𝑡)′ is a set of predictor variables possibly including lags of dependent variable, 

exogenous predictors and underlying factors (unobserved latent variables) extracted from a 

large set of covariates and lags of the factors 3. 

3.1 Univariate autoregressive (AR) model  

A simple univariate autoregressive AR(p) model is used as a benchmark model. The order p is 

determined based on the Bayesian information criterion (BIC) and the estimates of the 

parameters are obtained by OLS method. 

𝛑𝐭+𝐡 = 𝛂𝟎 + ∑ 𝜶𝒊

𝒑

𝒊=𝟏

 𝛑𝐭−𝒊+𝟏 + 𝒖𝒕+𝒉 

where 𝜋𝑡+ℎ is ℎ period ahead inflation, 𝛼0, . . . , 𝛼𝑝 are parameters and 𝑢𝑡+ℎ is the forecast error. 

                                                             
3 A popular alternative approach is iterated (or recursive) forecasting approach where multi-step ahead 

forecasts are constructed iteratively based on one-period ahead forecasting model’s estimation. 

Theoretically, the iterated strategy generates more efficient estimates of parameters if the specification of 

one-period ahead model is correct. However, it is susceptible to bias if the model is misspecified (M. 

Marcellino et al., 2006). On the other hand, the direct strategy is not prone to model misspecification and 

a unique approach applicable for all machine learning methods.  
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3.2 Factor augmented autoregressive (FAAR) model  

One of the most widely used statistical methods for macroeconomic forecasting is a factor 

analysis. In this analysis, information contained in a large set of candidate predictors is 

summarized by few unobserved latent factors which are then used in forecasting equation as the 

predictors. The popularity of the factor analysis is attributed to its benefits such as mitigating 

effectively the curse of dimensionality issues, reducing the risk of omitting important predictor 

variables (omitted variable bias) in the models and being more robust to the presence of 

structural breaks in the dataset. For the formal setup, let 𝑥𝑖𝑡 be the value of observed large 

number of predictors, 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇. In a static factor model, each 𝑥𝑖𝑡 can be 

decomposed as follows: 

                                               𝒙𝒊𝒕 = 𝚲𝒊
′ 𝑭𝒕

𝒌 + 𝝐𝒊𝒕,     𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇, 

where 𝐹𝑖
𝑘 = (𝑓1𝑡 , 𝑓2𝑡 , … , 𝑓𝑘𝑡)′ is a 𝑘 × 1 vector of factors, 𝜦𝑖 is a 𝑘 × 1 vector of factor loadings 

(constants) associated with 𝐹𝑡
𝑘 and 𝜖𝑖𝑡 is the idiosyncratic shocks. 

According to the principal component approach proposed by Stock and Watson (2002b), which I 

follow for the factors extraction in our analysis, the factors and their loading are simultaneously 

estimated by solving the following minimization problem: 

𝐦𝐢𝐧
𝚲,𝐅𝐤

𝟏

𝑵𝑻
∑ ∑(𝒙𝒊𝒕 − 𝚲𝒊

′ 𝑭𝒕
𝒌)

𝟐
𝑻

𝒕=𝟏

𝑵

𝒊=𝟏

 

Determining optimal number of factors (𝑘) is a critical issue. There are a number of approaches 

for selecting the optimal number of factors in approximate static factor models. One of the most 

frequently used approaches is the information criterion estimator proposed by Bai and Ng 

(2002). The authors propose six different types of information criteria yielding consistent 

estimates of 𝑘 by minimizing them. Among the criteria the most commonly applied in practice is 

𝐼𝐶2 criteria which is defined as follows: 

𝑰𝑪𝟐 (𝒌) = 𝒍𝒏𝑽(𝒌) + 𝒌 (
𝑵 + 𝑻

𝑵𝑻
)𝒍𝒏(𝒎𝒊𝒏{𝑵, 𝑻}) 

where 𝑉(𝑘) =
1

𝑁𝑇
∑ ∑ (𝑥𝑖𝑡 − Λ𝑖

′ 𝐹𝑡
𝑘)

2𝑇
𝑡=1

𝑁
𝑖=1 . 
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Practically, it is advised to use several information criteria at the same time for determining 

optimal number of factors because no singe approach outperforms others (Choi and Hanbat 

Jeong 2017). Another popular approach considered in this paper is eigenvalue ratio estimator 

proposed by Ahn and Horenstein (2013), which obtains 𝑘 by maximizing the ratio of two 

adjacent eigenvalues of 
𝑋𝑋′

𝑁𝑇
 

𝑬𝑹(𝒌) =
𝝁̃𝑵𝑻,𝒌

𝝁̃𝑵𝑻,𝒌+𝟏
, 

Where 𝑋 = (𝑋1, … , 𝑋𝑇), 𝑋𝑡 = (𝑥1𝑡 , …  , 𝑥𝑁𝑡)′ and  𝜇̃𝑁𝑇,𝑘 denotes the k th largest eigenvalue of 
𝑋𝑋′

𝑁𝑇
  

Then, the forecasting equation including the common factors is determined as following factor 

augmented autoregressive (FAAR) type: 

𝛑𝐭+𝐡 = 𝛂𝟎 + ∑ 𝜶𝒊

𝒑

𝒊=𝟏

 𝛑𝐭−𝒊+𝟏 + ∑ 𝜷𝒋

𝒑

𝒋=𝟏

 𝐅𝐭−𝒋+𝟏
𝒌 + 𝒖𝒕+𝒉 

3.3 Models with regularization (Penalized Regression) 

Macroeconomic forecasting, under the situation in which there are a huge number of correlated 

predictors or number of predictors (𝑁) is much higher than number of observation (𝑇), can be 

not an easy task. In this setting, the major problem likely to face with is an overfitting (high 

variance of the model performance) --- in-sample performance of the model is quite accurate, but 

its out-of-sample forecasts is highly inaccurate. In the linear regression model, putting the 

constraints on the magnitude of the coefficients (so called regularization) is a one of the possible 

ways to tackle the issue. The objective function of regularized regression method to minimize is 

quite similar to that of OLS regression, only difference is the additional penalty term: 

∑ (𝝅𝒕+𝒉 − 𝜷𝟎 − ∑ 𝜷𝒊𝒙𝒊𝒕

𝑵

𝒊=𝟏

)

𝟐

+ 𝝀𝑷(𝜷𝟏 ,. . , 𝜷𝑵) 

𝑻

𝒕=𝟏

 

where 𝑃(𝛽1 , . . , 𝛽𝑁) is penalty term and 𝜆 is a positive hyper parameter. 

The value of hyper parameter λ defines the magnitude of the penalty term and its value 

determines bias-variance tradeoff. Generally speaking, the higher value of λ, the greater 
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shrinkage of the regression coefficients (the more regularization) and the more bias and less 

variance for the forecasting model. 

3.3.1 Ridge Regression 

Ridge regression was originally introduced by Hoerl and Kennard (1970), in which the penalty 

term is given by 𝑃(𝛽1, . . , 𝛽𝑁)= ∑ 𝛽𝑖
2𝑁

𝑖=1 . The minimization problem of the ridge regression is 

then written as follows: 

𝜷̂𝒓𝒊𝒅𝒈𝒆 = 𝐚𝐫𝐠 𝐦𝐢𝐧  
𝜷 

[ ∑  

𝑻

𝒕=𝟏

(𝝅𝒕+𝒉 − 𝜷𝟎 − ∑ 𝜷𝒊𝒙𝒊𝒕

𝑵

𝒊=𝟏

)

𝟐

+ 𝝀 ∑ 𝜷𝒊
𝟐

𝑵

𝒊=𝟏

 ] 

In the Ridge regression, the coefficients of the linear regression model are shrunk close to zero, 

which helps to prevent overfitting. However, the coefficients does not reach exactly zero for any 

value of 𝜆.  

3.3.2 Least Absolute Shrinkage and Selection Operator (LASSO) Regression 

LASSO is alternative regularization method proposed by Tibshirani (1996). In the LASSO 

regression, the penalty term is defined as 𝑃(𝛽1 , . . , 𝛽𝑁) = ∑ |𝛽𝑖
 |𝑁

𝑖=1  and overall minimization 

problem is given as follows: 

𝜷̂𝒍𝒂𝒔𝒔𝒐 = 𝐚𝐫𝐠 𝐦𝐢𝐧  
𝜷 

[ ∑  

𝑻

𝒕=𝟏

(𝝅𝒕+𝒉 − 𝜷𝟎 − ∑ 𝜷𝒊𝒙𝒊𝒕

𝑵

𝒊=𝟏

)

𝟐

+ 𝝀 ∑ |𝜷𝒊
 |

𝑵

𝒊=𝟏

 ] 

The LASSO regression also shrinks the coefficients to zero like ridge regression. However, it is 

notable that the LASSO conducts variable selection by forcing some coefficients to exactly zero 

due to the nature of the penalty term. 

3.3.3 Elastic Net Regression 

Zou and Hastie (2005) proposed the Elastic net regression method which combines penalty terms 

of both the Ridge and LASSO. By applying these penalties, Elastic net regression not only 

effectively shrinks the coefficients toward zero (as in ridge), but also pushes some coefficients to 

exactly zero (like in LASSO). The minimization problem is defined as follows: 

𝜷̂𝒆𝒍𝒂𝒔𝒕𝒊𝒄 𝒏𝒆𝒕 = 𝐚𝐫𝐠 𝐦𝐢𝐧  
𝜷 

[ ∑  

𝑻

𝒕=𝟏

(𝝅𝒕+𝒉 − 𝜷𝟎 − ∑ 𝜷𝒊𝒙𝒊𝒕

𝑵

𝒊=𝟏

)

𝟐

+ 𝝀∑{(𝟏 − 𝜶)𝜷𝒊
𝟐 + 𝜶

𝑵

𝒊=𝟏

|𝜷𝒊
 | }] 
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where 𝛼 ∈ [0, 1] is the hyper parameter to determine relative weights of the two penalty terms. 

In practice, optimal values of the hyper parameters of regularized regressions (𝜆 for ridge and 

lasso, 𝜆 and 𝛼 for elastic net) are usually determined by grid search with iterative k-fold cross-

validation (CV) technique. Grid search is a popular technique that searches the candidate best 

hyper parameters exhaustively from the grid of manually specified space of the hyper 

parameters. Major drawback of the method is that it can be computationally very expensive 

when there are many hyper parameters and many possible combination of hyper parameters.  K-

fold CV is a statistical technique to evaluate the performance of predictive models by randomly 

dividing the original sample into a set of folds; training set for training the predictive model, and 

a test set for evaluating it. However, K-fold CV is not appropriate method for hyper parameter 

tuning when time series dataset is used. In this setting, we face the “data leakage” issue due to 

the random partition procedure of K-fold CV. Thus, considering the inappropriateness of the 

traditional k-fold CV for time-series forecasting, an alternative technique walk-forward (or 

rolling origin evaluation) validation method for the hyper parameter optimization is used in this 

analysis (see Section 4.2). Moreover, I manually specified the search space of the hyper 

parameters for the regularized regressions as follows: 

𝜆 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] and  

𝛼 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. 

The regularized linear regression models (ridge, lasso and elastic net) cannot capture the 

nonlinear relationships between a target variable and the predictors. Thus, I use Extreme gradient 

boosting algorithm which is an uptrend machine learning algorithm in time series forecasting 

nowadays. 

3.4 Extreme Gradient Boosting (XGBoost) Algorithm 

Extreme gradient boosting (XGBoost), developed by Chen and Guestrin (2016), is a powerful 

state-of-art machine learning technique based on boosting tree models. XGBoost is an advanced 

version of gradient boosting decision tree algorithm4, providing high accuracy, efficiency and 

                                                             
4 Boosting is an ensemble meta-algorithm which transforms a set of "weak" learners into strong learners. 

Gradient boosting is a method in which new weak learners (usually shallow decision trees) are 

sequentially built by using the errors or residuals of previous weak learner and gradient descent algorithm. 
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scalability. The algorithm constructs a forest of shallow trees (with high bias and low variance) 

sequentially such that each of subsequent trees reduce the prediction errors5. I consider the 

following derivation of XGBoost algorithm from Chen and Guestrin (2016). A tree ensemble 

model uses 𝐾 additive functions to predict the output: 

                                                              𝒚̂𝒊 = ∑ 𝒇𝒌(𝒙𝒊)𝑲
𝒌=𝟏 ,     𝒇𝒌 ∈ 𝑭 

 𝐹 = {𝑓(𝑥) = 𝜔𝑞 (𝑥)}, (𝑞: ℝ𝑚 → 𝑇, 𝜔 ∈ ℝ𝑇) 

where 𝑦̂𝑖 is predicted value, 𝐹 is the space of regression trees. Each tree 𝑓𝑘 is determined by two 

parameters: tree structure 𝑞 and leaf weights 𝜔 (output values). 𝑇 is number of leaves in a tree, 

𝐾 is the number of trees. 𝑚 and 𝑛 represent the features and the sample size, respectively. 

The regularized objective function is defined as follows: 

𝐿(𝝓) = ∑ 𝒍(𝒚𝒊, 𝒚̂𝒊) + ∑ Ω(𝒇𝒌)𝑲
𝒌=𝟏

𝒏
𝒊=𝟏                   (1) 

Where  Ω(fk) = 𝛾𝑇 +
1

2
𝜆||𝜔||

2
 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is a loss function, Ω(fk) is regularization term, 𝜆 is hyper parameter controlling 

the degree of regularization of each 𝑓𝑘 and 𝛾 is a parameter controlling the extent of complexity 

penalty for tree structure on 𝑇 (splitting threshold). 

The loss function 𝑙(𝑦𝑖 , 𝑦̂𝑖) is a continuous twice-differentiable convex function representing 

difference between actual and true values and measures the fitness of the model to the training 

data. Ω(fk) regularization term helps to prevent overfitting by controlling the model’s 

complexity. As mentioned in Chen and Guestrin (2016), due to impossibility to optimize loss 

function 𝑙(𝑦𝑖 , 𝑦̂𝑖) for tree-ensemble model, it is needed to train the model in an additive manner. 

It means  that we add the tree 𝑓𝑖  which improves the model in equation (1). 

𝑳(𝒕) = ∑ 𝒍(𝒚𝒊 , 𝒚̂𝒊
(𝒕−𝟏)

+ 𝒇𝒕(𝒙𝒊)) +𝒏
𝒊=𝟏 Ω(𝒇𝒕)        (2) 

                                                             

It means that the algorithm trains each new trees based on gradient of previous tree’s loss function 

(instead of errors of the previous tree). 
5 Despite the new tree is quite shallow, whenever a new tree is added to the ensemble, the bias of the 

model decreases and the model complexity increases.  
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where 𝑦̂𝑖
(𝑡−1)

 is the  prediction from the previous iteration. 

After the second-order Taylor expansion of the objective function equation (2) and with some 

calculations, we can finally get optimized weight 𝜔𝑗
∗ for node 𝑗 for a fixed structure 𝑞 as: 

𝜔𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

 

where 𝑔𝑖 and ℎ𝑖 are the first and second order gradient statistics on the loss function. 

Moreover, the net gain of the objective function after each split is calculated as: 

𝐺𝑎𝑖𝑛 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼
] − 𝛾 

where 𝐼𝐿 and 𝐼𝑅 are the set of instances on left and right nodes after the split and 𝐼 = 𝐼𝐿 ∪ 𝐼𝑅 

As for the tuning the hyper parameters of the XGBoost, grid search with walk-forward (or rolling 

origin evaluation) cross-validation method is used. The table below shows the manually 

specified search spaces of the hyper parameters for XGBoost. 

Table 1. Manually specified search spaces of the hyper parameters of XGBoost 

Parameters Description 
Search 

space/default values 

nrounds maximum number of boosting iterations [100, 300, 500] 

max_depth maximum depth of a tree [2, 4, 6] 

eta learning rate [0.1, 0.2, 0.3] 

gamma minimum loss reduction required to make a 

further partition on a leaf node of the tree. 

0 

colsample_bytree subsample ratio of columns when constructing 

each tree 

1 

min_child_weight minimum sum of instance weight (hessian) 

needed in a child. 

1 

subsample subsample ratio of the training instance. 1 

IV. DATA DESCRIPTION AND METHODS 

4.1 Data description 

The dataset used in this analysis consists of 120 quarterly Mongolian macroeconomic variables 

(including inflation) and covers the period from third quarter of 2007 to fourth quarter of 2021 
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(𝑁 =120, 𝑇 =58). The target variable inflation is measured by annual change of log of consumer 

price index in Mongolia.  

𝝅𝒕 = 𝚫 𝐥𝐨𝐠(𝑪𝑷𝑰𝒕) = 𝐥𝐨𝐠(𝑪𝑷𝑰𝒕) − 𝐥𝐨𝐠 (𝑪𝑷𝑰𝒕−𝟒) 

Other 119 time-series are the main indicators in all four macroeconomic sectors of Mongolia 

(real sector, money and financial sector, external sector and public sector), reflecting the state of 

the economy as a whole. Non-stationary series are transformed into stationary series by taking 

differences. The Table 3 in the Appendix shows the full list of 120 series and their relevant 

stationarity transformations. In addition, all macroeconomic variables are standardized prior to 

the estimations. 

4.2 Forecasting procedure and hyper parameters tuning 

The general forecasting procedure used in this analysis is that each of the models are sequentially 

trained over expanding window process and one-step-ahead out-of-sample forecasts of 𝜋𝑡+ℎ are 

constructed.  It means that estimation sample for every one-step-ahead out-of-sample forecasts of 

𝜋𝑡+ℎ covers all previous observations of the respective forecast (Figure 1). I set the size of the 

initial training window as 80 percent of the total observations 𝑇6. 

Cross-validation is widely used method for tuning hyper parameters of the models. However, 

standard cross-validation techniques such as k-folds and leave-on-out cross-validation are not 

appropriate when time series dataset are used. Because, data leakage issue—in which hold out 

validation set leaks into the training dataset, leading to incorrect estimate of model’s 

performance---arises due to the random partitions7 of the dataset. As mentioned in previous 

section, in this analysis I apply a cross-validation technique called walk-forward (or rolling 

origin evaluation) validation method originally discussed by Tashman (2000). In this method, 

                                                             
6 It means that the total number of one-step-ahead out-of-sample forecasts is equal to 20 percent of length 

of total observations 𝑇. 
7 Random partition is the basic principle of the standard cross-validation methods. Moreover, the standard 

cross-validation methods require to have independent and identically distributed (𝑖. 𝑖. 𝑑) data. Having 

𝑖. 𝑖. 𝑑 data is one of the most important and general assumptions for statistical procedure and machine 

learning. However, time series data are likely to be highly auto correlated which means the 

𝑖. 𝑖. 𝑑 assumption does not hold well for them. 
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there are a series of single observation hold-out validation sets and relative training sets of each 

of them contains the observations that occurred before them (Figure 2). 

Figure 1. General forecasting procedure (outer loop) 
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Figure 2. Walk forward cross-validation (inner loop) for hyper parameter tuning 
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4.3 Forecasting evaluation 

As a measurement of the forecasting accuracies of the models, the root mean squared forecast 

errors (RMSFEs) are calculated as follows: 

𝑅𝑀𝑆𝐹𝐸 = √
1

𝑇 − ℎ − 𝑇0 + 1
∑ (𝜋𝑡+ℎ − 𝜋̂𝑡+ℎ)

𝑇−ℎ

𝑡=𝑇0

2

  

where 𝜋̂𝑡+ℎ is ℎ quarter ahead forecast of inflation constructed by forecasting models, 𝑇𝑜 is the 

sample size used in estimating the model. 

4.4 Forecast combination 

In this analysis, I consider three types of forecast combination method, namely, the simple 

average, the trimmed average, and the median forecast combination8. 

 Simple average forecast combination 

Suppose 𝑓𝑡 = (𝑓1𝑡 , … , 𝑓𝑁𝑡)′ are 𝑀 number of imperfect collinear predictions for the variable of 

interest 𝜋𝑡+ℎ. The simple average assigns equal weights (𝑤 =
1

𝑀
) to all predictions and calculates 

combined forecast as follows: 

𝜋̂𝑡+ℎ = 𝑓𝑡
′𝑤 

 Trimmed average forecast combination 

Again, suppose 𝑓𝑡 = (𝑓1𝑡 , … , 𝑓𝑁𝑡)′ are 𝑀 number of imperfect collinear predictions for the 

variable of interest 𝜋𝑡+ℎ and the ordered forecasts for each point in time,: 

𝑓𝑡𝑜𝑟𝑑𝑒𝑟𝑒𝑑  =  (𝑓{(1)𝑡},… , 𝑓{(𝑁)𝑡})′ 

                                                             
8 There are several other popular forecast combination methods like Bates/Granger, OLS and 

Newbold/Granger. However, the methods compute the combination weights using both of actual values 

and matrix of models’ forecasts. It means that in order to compare the performances of different 

composite forecasts, we need to split our dataset (which includes actual values and matrix of models’ 

forecasts) into training and testing sets. Unfortunately, in our case, the length of the dataset is quite short 

(only 11 or 12 quarter depending on forecast horizon), meaning that splitting dataset into training and 

testing set and comparing the performance of the forecast combination methods might be misleading. 

Thus, in our analysis, I only consider the simple average, the trimmed average, and the median forecast 

combination methods. 
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Then, we can compute trimmed average forecast using a trim factor 𝜆 as follows9: 

𝜋̂𝑡+ℎ =
1

𝑀 ∗ (1 − 2𝜆)
 ∑ 𝑓{(𝑖)𝑡}

(1−𝜆)𝑀

𝑖 = 𝜆𝑀 +1

 

 Median forecast combination 

In median forecast combination, weight 1 is given to median forecast and weight 0 is given to 

other forecasts for each point in time. 

𝜋̂𝑡+ℎ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑡) 

V. EMPIRICAL RESULT 

This section describes the main results of the recursive out-of-sample prediction experiments 

applied in this analysis. By the comparison of various models’ forecasting performance, several 

interesting results have been found (Table 2).  

Table 2. The ratio of the RMSFEs of the models to the MSFE of the benchmark AR model 

Name of the models 

Forecast horizon 

One-quarter 
ahead 

Two-quarter 
ahead 

Three-quarter 
ahead 

Four-quarter 
ahead 

I II III IV 
Part A: The factor model and machine learning algorithms: 

FAAR /ah/ 76.4% 79.3% 74.9% 117. 3% 

FAAR /bn/ 215.6% 207.1% 132.5% 134.3% 

Ridge 108.7% 79.6% 76.7% 97.5% 

Lasso 116.7% 81.5% 97.2% 103.2% 

Elastic net 122.7% 85.2% 82.3% 107.7% 

XGBoost 126.1% 67.1% 76.1% 86.3% 

Part B: Forecast combinations: 

Simple average 95.9% 72.0% 78.7% 94.5% 

Median 100.1% 71.2% 83.8% 96.2% 

Trimmed average 99.5% 72.0% 80.2% 95.5% 

Note: The bolded numbers denote the relative methods’ forecasting performances are better than 

that of benchmark AR model. 

Firstly, even though there are a few exceptions, most of the entries in first and fourth columns of 

Table 2-Part A are more than 100 percent. It means that our benchmark AR model is quite 

                                                             
9 In the analysis, I set the value of trim factor 𝜆 = 0.2 
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competitive with other machine learning and factor models at the one-quarter and four-quarter 

prediction horizon. For instance, the FAAR model based on eigenvalue estimator of Ahn and 

Horenstein (2013) is the only model which outperforms the AR model at one-quarter prediction 

horizon. However, at two and three-quarter prediction horizon, the base AR model is dominated 

by all other models excluding the FAAR model based on information criterion estimator of Bai 

and Ng (2002)10. 

Secondly, among the regularized linear regression models, Ridge regression shows the best 

performance at every prediction horizon. Specifically, at the four-quarter prediction horizon, it is 

one of the two models (another one is XGBoost) which dominate the benchmark AR model. 

Ridge regression’s dominance over other two regularized regression methods, namely, Lasso and 

Elastic net, might be caused by the high degree of correlation between the predictor variables.  

Thirdly, XGBoost algorithm, which captures the nonlinear interaction between the variables, 

provides quite satisfactory results in terms of forecasting accuracy. For instance, at the two and 

four-quarter prediction horizon, XGBoost dominates all other models. More specifically, at the 

two-quarter prediction horizon the algorithm reduces average forecast error significantly by 32.9 

percent relative to the benchmark model, which is the highest gain of prediction accuracy among 

all models at all prediction horizon. 

Fourthly, FAAR models show different performance depending on approach to determine 

optimal number of factors. FAAR model based on information criterion estimator of Bai and Ng 

(2002) shows the worst performance at every period of prediction horizon. However, FAAR 

model based on eigenvalue ratio estimator of Ahn and Horenstein (2013) shows the good 

performance specially at one and three quarter prediction horizon. 

                                                             
10 The selected optimal numbers of factors by information criterion estimator of Bai and Ng (2002) are 

relatively high (seven and eight factors) over the expanding window training period, whereas the 

determined number of factors by eigenvalue ratio of Ahn and Horenstein (2013) are relatively low only 

one and two factors. Moreover, FAAR model based on information criterion estimator of Bai and Ng 

(2002) shows the worst performance in terms of forecasting accuracy at every period of prediction 

horizon. 
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Finally, as seen from the Table 2-Part B, almost all composite forecasts outperform the 

benchmark AR model forecasts at every prediction horizon. Among them simple average 

forecast combination perform slightly better than other two composite forecasts, namely trimmed 

average and median forecast combination. 

VI. CONCLUSION 

In this paper, I conduct a horse race analysis using several popular machine learning algorithms, 

the factor model and the traditional univariate AR model in forecasting the one to four quarter 

ahead inflation for Mongolia. The results of this study show that all machine learning methods 

are likely to dominate the benchmark AR model in terms of the forecasting accuracy in medium 

term (at two and three quarter prediction horizon). However, not all methods work equally well – 

XGBoost, FAAR-ah and Ridge show the best performance. Moreover, the composite forecasts 

provide quite satisfactory results in terms of forecasting accuracy. Therefore, it can be concluded 

that the machine learning methods and the forecast combination techniques can be the potential 

alternative forecasting tools for the BoM to make short and medium term inflation forecasts in 

Mongolia. 
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VIII. APPENDIX 

Table 3. List of variables and transformation 

№ Name of variable Transformation11 

Monetary aggregates 

1 M2 5 

2 M1 5 

3 
Loan outstanding of 
banks 

5 

4 Policy rate 1 

5 CBB rate 1 

6 
Interbank market 
rate 

1 

7 Lending rate 1 

8 
Exchange rate of 
USD, average 

5 

9 
Exchange rate of 
USD, end of period 

5 

10 NEER 5 

11 REER 5 

Labor market 

12 Employment 5 

13 Labor force 5 

14 Unemployment Rate 5 
15 Nominal Wage 5 

16 Real wage 5 

Balance of payment 

17 FDI 2 

18 FDI inflow 2 

19 Portfolio flow 2 

20 Total export 5 

21 Export /goods/ 5 
22 Export / services/ 5 

23 Total import 5 

24 Import /goods/ 5 

25 Import /services/ 5 

Output (Production method) 

26 
GDP (Production 
method) 

5 

27 
Real GDP: 
Agriculture 

5 

28 Real GDP: Mining 5 

                                                             
11 Transformation (1 – no transformation; 2 – year on 
year change; 4 – logarithm; 5 – year on year change 

of logarithm) 

29 
Real GDP: 
Manufacturing 

5 

30 
Real GDP: 
Electricity 

5 

31 
Real GDP: 
Construction 

5 

32 Real GDP: Trade 5 

33 
Real GDP: 
Transportation 

5 

34 
Real GDP: 
Communication 

5 

35 Real GDP: Services 5 

36 
Real GDP: Net tax 
on products 

5 

37 
Agriculture: 
Livestock 

5 

Output (Expenditure  method) 

38 
GDP (Expenditure 
method) 

5 

39 Final consumption 5 

40 
Household 
consumption 

5 

41 
Government 
consumption 

5 

42 
Gross capital 

formation 
5 

43 
Gross fixed capital 

formation 
5 

44 
Changes in 
inventories 

2 

45 Net exports 2 

46 Export 5 
47 Import 5 

Deflator (expenditure method) 

48 
Deflator 
consumption 

5 

49 
Deflator government 

spending  
5 
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50 
Deflator gross 
capital formation 

5 

51 Deflator export  5 

52 Deflator import 5 

Budget 
53 Revenue 5 

54 Tax revenue 5 

55 Non-tax revenue 2 

56 Expenditure 2 

57 Budget balance 2 

58 Current Expenditure 5 

59 Interest payment 2 
60 Net loan 2 

61 
Investment 

Expenditure 
2 

External sector 
62 Copper price 5 

63 Gold price 5 

64 Iron ore price 5 

65 Brent oil price 5 

66 US GDP growth 2 

67 Russia GDP growth 2 

68 China GDP growth 2 
69 Coal price /Thermal/ 5 

70 
Crude oil price 

/Ural/ 

5 

Real Estate 

71 Top-20 index 5 

72 
Market 
Capitalization 

5 

73 
Value of 

Transaction 
5 

74 
Rent for apartment, 

1 room 
5 

Price 

75 
Consumer Price 

Index 
5 

76 
Food Consumer 
Price Index 

5 

77 
Non-Food 
Consumer Price 
Index 

5 

78 
Core Consumer 
Price Index 

5 

79 
Meat Consumer 
Price Index 

5 

80 
Non-meat Food 
Consumer Price 
Index 

5 

81 
Fuel Consumer 
Price Index 

5 

82 
Administrated 
Consumer Price 

Index 

5 

83 Others CPI 5 

84 
Imported Goods CPI 

from Others 
5 

85 
Domestic Goods + 
Services CPI from 
Others 

5 

86 
Goods CPI from 
Others 

5 

87 
Services CPI from 
Others 

5 

88 Beef CPI 5 

89 Flour CPI 5 

90 Milk CPI 5 

91 Mutton CPI 5 

92 Vegetables CPI 5 

93 
Domestic goods CPI 
from Others 

5 

94 Other Foods CPI 5 

95 Other Meats CPI 5 

External Trade  

96 
Consumer goods 

imports, CIF 
5 

97 
Non-durable goods 

import, CIF 
5 

98 
Durable imports, 
CIF 

5 

99 Cars imports, CIF 5 

100 
Industrial imports, 
CIF 

5 

101 
Capital goods 
imports, CIF 

5 

102 
Construction goods 
imports, CIF 

5 

103 
Machinery goods 
imports, CIF 

5 
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104 
Other capital goods 
imports, CIF 

5 

105 Fuels imports, CIF 5 

106 Diesels imports, CIF 5 

107 
Other fuels imports, 

CIF 
5 

108 Other imports, CIF 5 
109 Mining goods export 5 

110 Copper exports  5 

111 Coal exports  5 

112 Iron ore exports  5 

113 Cash goods exports  5 

114 
Export volume of 
copper  

5 

115 
Export volume of 
coal 

5 

116 
Export volume of 
iron ore  

5 

Uncategorized 

117 
New loan issued by 
banks  

5 

118 
Business loan 
outstanding of banks  

5 

119 
New business loan 
issued by banks  

5 

120 Household income  5 

 


